Example #1
0
File: growth.py Project: sonya/eea
def do_kuznets_plot():
    minyear = min(config.STUDY_YEARS)
    maxyear = max(config.STUDY_YEARS)

    plot = ScatterPlot("gdp vs emissions change", None, "wiod")

    for country in config.countries:
        gdp_pop = common.get_national_value(country, minyear, "ppppc")
        (env_i, denom_i, intensity_i) = common.get_efficiency(
            country, minyear, "env", "gdp")
        (env_f, denom_f, intensity_f) = common.get_efficiency(
            country, maxyear, "env", "gdp")

        # numbers are just for sorting which goes on x axis
        plot.set_value("1 ppp per capita", country, gdp_pop)
        plot.set_value("2 emiss change", country, intensity_f - intensity_i)

    plot.write_tables()
    plot.generate_plot()

    for year in (minyear, maxyear):
        plot = ScatterPlot("gdp vs emissions %d" % year, None, "wiod")

        for country in config.countries:
            gdp_pop = common.get_national_value(country, year, "ppppc")
            env_pop = common.get_efficiency(country, year, "env", "gdp")

            plot.set_value("1 gdp per capita", country, gdp_pop)
            plot.set_value("2 emissions per capita", country, env_pop[2])

        plot.write_tables()
        plot.generate_plot()
Example #2
0
File: trade.py Project: sonya/eea
    def describe_balance_intensity():
        export_total = export_balance.sum(0)
        import_total = import_balance.sum(0)
        all_total = all_E.sum(0)

        balance = export_total.subtract(import_total)
        balance_ratio = balance.divide(all_total)

        country_name = config.countries[base_country]
        years = [str(minyear), str(maxyear)]

        fields = []
        for y in years:
            balance_val = balance.get_element("sum", y)
            ratio_val = balance_ratio.get_element("sum", y)
            (gdp_val, env_val, intensity) = \
                common.get_efficiency(base_country, int(y))

            if int(y) in balance_plots:
                plot = balance_plots[int(y)]
                # ratio = exports to imports
                plot.set_value("2 ratio", base_country, ratio_val)
                plot.set_value("1 intensity", base_country, intensity)

            if int(y) in worldmap:
                worldmap[int(y)].set_country_value(base_country, balance_val)

            fields.append(utils.add_commas(balance_val))
            fields.append("%.2f" % ratio_val)
            fields.append("%.2f" % intensity)

        print(country_name.ljust(15) + " & " + " & ".join(fields) + " \\NN")
Example #3
0
    def describe_balance_intensity():
        export_total = export_balance.sum(0)
        import_total = import_balance.sum(0)
        all_total = all_E.sum(0)

        balance = export_total.subtract(import_total)
        balance_ratio = balance.divide(all_total)

        country_name = config.countries[base_country]
        years = [str(minyear), str(maxyear)]

        fields = []
        for y in years:
            balance_val = balance.get_element("sum", y)
            ratio_val = balance_ratio.get_element("sum", y)
            (gdp_val, env_val, intensity) = \
                common.get_efficiency(base_country, int(y))

            if int(y) in balance_plots:
                plot = balance_plots[int(y)]
                # ratio = exports to imports
                plot.set_value("2 ratio", base_country, ratio_val)
                plot.set_value("1 intensity", base_country, intensity)

            if int(y) in worldmap:
                worldmap[int(y)].set_country_value(base_country, balance_val)

            fields.append(utils.add_commas(balance_val))
            fields.append("%.2f" % ratio_val)
            fields.append("%.2f" % intensity)

        print(country_name.ljust(15) + " & " + " & ".join(fields) + " \\NN")
Example #4
0
File: growth.py Project: sonya/eea
def do_overview_table(sortby):
    minyear = min(config.STUDY_YEARS)
    maxyear = max(config.STUDY_YEARS)

    data = {}
    reverse_data = {}
    for (country, name) in config.countries.items():
        (env_i, gdp_i, intensity_i) = common.get_efficiency(
            country, minyear, "env", "gdp")
        (env_f, gdp_f, intensity_f) = common.get_efficiency(
            country, maxyear, "env", "gdp")

        if sortby == "growth":
            pop_i = common.get_national_value(country, minyear, "pop")
            pop_f = common.get_national_value(country, maxyear, "pop")
            ppp_i = common.get_national_value(country, minyear, "ppppc")
            ppp_f = common.get_national_value(country, maxyear, "ppppc")

            percap_i = env_i / pop_i * 1000
            percap_f = env_f / pop_f * 1000

            growth = intensity_f - intensity_i
            pgrowth = percap_f - percap_i
            reverse_data[ppp_i] = name
            data[name] = [
                utils.add_commas(val).rjust(10) for val in (ppp_i, ppp_f)]
            data[name] += [
                "%.2f" % val for val in (intensity_i, intensity_f, growth,
                                         percap_i, percap_f, pgrowth)]

        else: # end year intensity
            reverse_data[intensity_f] = name
            data[name] = [
                utils.add_commas(val).rjust(10)
                for val in (gdp_i, gdp_f, env_i, env_f)]
            data[name] += ["%.2f" % val for val in (intensity_i, intensity_f)]

    for key in sorted(reverse_data.keys()):
        country = reverse_data[key]
        vals = data[country]
        print(country.ljust(18) + " & " + " & ".join(vals) + " \\NN")