Example #1
0
def merge_pyalgo_accdb(pyalgo, accdb):
    pyalgo = pyalgo.copy()
    pyalgo.columns = wio.flatten_columns(pyalgo.columns)
    merged = pd.concat((pyalgo, accdb), axis=1, keys=("pyalgo", "accdb"))
    merged.columns = wio.flatten_columns(merged.columns)

    return merged
Example #2
0
def test_flatten_columns():
    cols = pd.MultiIndex.from_tuples([("a", "aa"), ("b", "")],
                                     names=("gear", "item"))

    fcols = wio.flatten_columns(cols)
    infcols = wio.inflate_columns(fcols)
    assert cols.equals(infcols)
    assert cols.names == infcols.names
    with pytest.raises(AssertionError, match="MultiIndex?"):
        wio.inflate_columns(cols)
Example #3
0
def is_more_low_powered_gears(cyc):
    cyc2 = cyc.copy()
    cyc2.columns = wio.inflate_columns(cyc2.columns)
    c22 = cyc2.iloc[1571:1579][["ok_p", "ok_max_n"]].dropna(axis=1, how="all")
    try:
        ## is there any row with all-low-p AND 2-or-more n-max-ok?
        bad_rows = (~c22["ok_p"].replace(-1, 0).astype("bool")).all(axis=1) & (
            c22["ok_max_n"].replace(-1, 0).astype("bool").sum(axis=1) > 1)
        if bad_rows.any():
            c22.columns = wio.flatten_columns(c22.columns)
            return (
                list(bad_rows[bad_rows].index),
                pd.concat(
                    (c22, cyc.iloc[1571:1579].loc[:, ["g_min", "g_max"]]),
                    axis=1),
            )
    except Exception as ex:
        print(ex)
Example #4
0
def display_pyalgo_flags(pyalgo, accdb, props):
    flags = pyalgo.select_dtypes("int8").copy()
    flags.columns = wio.flatten_columns(flags.columns)
    pyalgo = pyalgo[["p_req", "p_avail"]].copy()
    pyalgo.columns = wio.flatten_columns(pyalgo.columns)
    grid(pd.concat((pyalgo, flags), axis=1))
Example #5
0
def display_pyalgo(pyalgo, accdb, props):
    pyalgo.columns = wio.flatten_columns(pyalgo.columns)
    grid(pyalgo.drop("t", axis=1))
Example #6
0
# veh_nums += [82, 88, 91, 99, 100, 101, 112, 113, 114]
# # UNCOMMENT next line to FETCH new vehicles.
p1, c1, p2, c2 = load_accdb_and_python_datasets()
equivalent_series = [
    ("v_orig", "V_cycle"),
    ("v_downscale", "v_target"),
    # ("a", "a_target"),
    ("P_tot_set", "p_req"),
    # ("P_max", "p_available"),
    ("g_max", "g_max0"),
    ("g_min", "g_min"),
    # ("gear", "gears"),
    # ("nc", "n"),
]

c2.columns = wio.flatten_columns(c2.columns)

cols1, cols2 = zip(*equivalent_series)
cols1, cols2 = list(cols1), list(cols2)
## Concat props to col-aggregates & convert prop-cols to numerics
cc1 = pd.concat((p1.infer_objects(), c1[cols1].abs().mean(level=0)), axis=1)
cc2 = pd.concat((p2.infer_objects(), c2[cols2].abs().mean(level=0)), axis=1)

equivalent_props = [
    ("Description", None),
    ("vehicle_class", "wltc_class"),
    ("pmr_km", None),
    ("no_of_gears", None),
    ("f_dsc_req", "f_dsc"),
    ("v_max", "v_max"),
    ("n_vmax", "n_vmax"),