def data_received(keywords_freq_files, keywords_stats_files): if keywords_freq_files: text_test_significance = settings['generation_settings']['test_significance'] text_measure_effect_size = settings['generation_settings']['measure_effect_size'] (text_test_stat, text_p_value, text_bayes_factor) = main.settings_global['tests_significance']['keywords'][text_test_significance]['cols'] text_effect_size = main.settings_global['measures_effect_size']['keywords'][text_measure_effect_size]['col'] if settings['fig_settings']['use_data'] == main.tr('Frequency'): wordless_fig_freq.wordless_fig_freq_ref(main, keywords_freq_files, ref_file = ref_file, settings = settings['fig_settings'], label_x = main.tr('Keywords')) else: if settings['fig_settings']['use_data'] == text_test_stat: keywords_stat_files = {keyword: numpy.array(stats_files)[:, 0] for keyword, stats_files in keywords_stats_files.items()} label_y = text_test_stat elif settings['fig_settings']['use_data'] == text_p_value: keywords_stat_files = {keyword: numpy.array(stats_files)[:, 1] for keyword, stats_files in keywords_stats_files.items()} label_y = text_p_value elif settings['fig_settings']['use_data'] == text_bayes_factor: keywords_stat_files = {keyword: numpy.array(stats_files)[:, 2] for keyword, stats_files in keywords_stats_files.items()} label_y = text_bayes_factor elif settings['fig_settings']['use_data'] == text_effect_size: keywords_stat_files = {keyword: numpy.array(stats_files)[:, 3] for keyword, stats_files in keywords_stats_files.items()} label_y = text_effect_size wordless_fig_stat.wordless_fig_stat_ref(main, keywords_stat_files, ref_file = ref_file, settings = settings['fig_settings'], label_y = label_y) wordless_msg.wordless_msg_generate_fig_success(main) else: wordless_msg_box.wordless_msg_box_no_results(main) wordless_msg.wordless_msg_generate_fig_error(main) dialog_progress.accept() if keywords_freq_files: wordless_fig.show_fig()
def data_received(tokens_freq_files, tokens_stats_files): if tokens_freq_files: measure_dispersion = settings['generation_settings'][ 'measure_dispersion'] measure_adjusted_freq = settings['generation_settings'][ 'measure_adjusted_freq'] col_dispersion = main.settings_global['measures_dispersion'][ measure_dispersion]['col'] col_adjusted_freq = main.settings_global['measures_adjusted_freq'][ measure_adjusted_freq]['col'] if settings['fig_settings']['use_data'] == main.tr('Frequency'): wordless_fig_freq.wordless_fig_freq( main, tokens_freq_files, settings=settings['fig_settings'], label_x=main.tr('Tokens')) else: if settings['fig_settings']['use_data'] == col_dispersion: tokens_stat_files = { token: numpy.array(stats_files)[:, 0] for token, stats_files in tokens_stats_files.items() } label_y = col_dispersion elif settings['fig_settings']['use_data'] == col_adjusted_freq: tokens_stat_files = { token: numpy.array(stats_files)[:, 1] for token, stats_files in tokens_stats_files.items() } label_y = col_adjusted_freq wordless_fig_stat.wordless_fig_stat( main, tokens_stat_files, settings=settings['fig_settings'], label_x=main.tr('Tokens'), label_y=label_y) wordless_msg.wordless_msg_generate_fig_success(main) else: wordless_msg_box.wordless_msg_box_no_results(main) wordless_msg.wordless_msg_generate_fig_error(main) dialog_progress.accept() if tokens_freq_files: wordless_fig.show_fig()