def test_pytorch_model_country_as_dense_id_list(self): net_spec, pytorch_net = train_bandit.build_pytorch_net( feature_specs=Params. EXPERIMENT_SPECIFIC_PARAMS_COUNTRY_AS_DENSE_ID_LIST["features"], product_sets=Params. EXPERIMENT_SPECIFIC_PARAMS_COUNTRY_AS_DENSE_ID_LIST[ "product_sets"], float_feature_order=Datasets. DATA_COUNTRY_DENSE_ID_LIST["final_float_feature_order"], id_feature_order=Datasets. DATA_COUNTRY_DENSE_ID_LIST["final_id_feature_order"], layers=Params.ML_PARAMS["model"]["layers"], activations=Params.ML_PARAMS["model"]["activations"], input_dim=train_bandit.num_float_dim( Datasets.DATA_COUNTRY_DENSE_ID_LIST), ) skorch_net = train_bandit.fit_custom_pytorch_module_w_skorch( module=pytorch_net, X=Datasets.X_COUNTRY_DENSE_ID_LIST["X_train"], y=Datasets.X_COUNTRY_DENSE_ID_LIST["y_train"], hyperparams=Params.ML_PARAMS, ) test_mse = skorch_net.history[-1]["valid_loss"] # make sure mse is better or close to out of the box GBDT & MLP # the GBDT doesn't need as much training so make tolerance more forgiving assert test_mse < self.results_gbdt["mse_test"] * 1.15 assert test_mse < self.results_mlp["mse_test"] * 1.15
def test_same_predictions_country_as_categorical(self): raw_data = shuffle(Datasets._raw_data) rand_idx = 0 test_input = raw_data.iloc[rand_idx] data = preprocessor.preprocess_data( raw_data, self.ml_params["data_reader"]["reward_function"], Params.EXPERIMENT_SPECIFIC_PARAMS_COUNTRY_AS_CATEGORICAL, shuffle_data=False, # don't shuffle so we can test the same observation ) _X, _y = preprocessor.data_to_pytorch(data) X_COUNTRY_CATEG = { "X_train": {"X_float": _X["X_float"][: Datasets._offset]}, "y_train": _y[: Datasets._offset], "X_test": {"X_float": _X["X_float"][Datasets._offset :]}, "y_test": _y[Datasets._offset :], } net_spec, pytorch_net = train_bandit.build_pytorch_net( feature_specs=Params.EXPERIMENT_SPECIFIC_PARAMS_COUNTRY_AS_CATEGORICAL[ "features" ], product_sets=Params.EXPERIMENT_SPECIFIC_PARAMS_COUNTRY_AS_CATEGORICAL[ "product_sets" ], float_feature_order=Datasets.DATA_COUNTRY_CATEG[ "final_float_feature_order" ], id_feature_order=Datasets.DATA_COUNTRY_CATEG["final_id_feature_order"], layers=self.ml_params["model"]["layers"], activations=self.ml_params["model"]["activations"], input_dim=train_bandit.num_float_dim(Datasets.DATA_COUNTRY_CATEG), ) pre_serialized_predictor = BanditPredictor( experiment_params=Params.EXPERIMENT_SPECIFIC_PARAMS_COUNTRY_AS_CATEGORICAL, float_feature_order=Datasets.DATA_COUNTRY_CATEG["float_feature_order"], id_feature_order=Datasets.DATA_COUNTRY_CATEG["id_feature_order"], id_feature_str_to_int_map=Datasets.DATA_COUNTRY_CATEG[ "id_feature_str_to_int_map" ], transforms=Datasets.DATA_COUNTRY_CATEG["transforms"], imputers=Datasets.DATA_COUNTRY_CATEG["imputers"], net=pytorch_net, net_spec=net_spec, ) skorch_net = train_bandit.fit_custom_pytorch_module_w_skorch( module=pre_serialized_predictor.net, X=X_COUNTRY_CATEG["X_train"], y=X_COUNTRY_CATEG["y_train"], hyperparams=self.ml_params, ) pre_serialized_predictor.config_to_file(self.tmp_config_path) pre_serialized_predictor.net_to_file(self.tmp_net_path) post_serialized_predictor = BanditPredictor.predictor_from_file( self.tmp_config_path, self.tmp_net_path ) pre_pred = pre_serialized_predictor.predict(json.loads(test_input.context)) post_pred = post_serialized_predictor.predict(json.loads(test_input.context)) assert np.allclose(pre_pred["scores"], post_pred["scores"], self.tol) assert pre_pred["ids"] == post_pred["ids"]