Example #1
0
def run_otax(agent_type='W'):
    #def run_otax(seed=1):
    """
    12-AX, trial-based with curriculum learning
    """
    #np.random.seed(seed)
    otax = tasks.OneTwoAX()

    if agent_type == 'L':
        agent = workmate_sparse.WorkMATe(otax)
        print('Liekes agent sparse')
    else:
        agent = workmate.WorkMATe(otax)
        print('Wouters agent')

    #agent = workmate.WorkMATe(otax)

    total_buff = np.zeros(100)
    saved_p = np.zeros(1)
    lesson_perf_buff = np.zeros((2, 5))

    i = 0  # how many trials were run?
    k = 0  # how many trials were run at the current level?

    aa = True
    while aa:
        # run trial, get performance
        r = _run_trial(agent, otax)
        # increase i
        i += 1
        k += (1 if otax.trial_at_highest_level else 0)
        # store 'correct' in buffer(s)
        corr = (r >= otax.bigreward)
        total_buff[0] = corr
        total_buff = np.roll(total_buff, 1)

        # check whether crit is met:
        if np.mean(total_buff) > .85:
            print('Converged at difficulty {}'.format(otax.difficulty))
            print('after {} /// {} trials'.format(i, k))
            lesson_perf_buff[:, otax.difficulty] = i, k
            print(lesson_perf_buff)

            if otax.difficulty == 4:
                #otax.difficulty == 4 #check convergence
                break
            otax.difficulty += 1
            total_buff *= 0
            i = 0
            k = 0
        # print progress.
        if (i > 0) and (i % trial_print == 0):
            print(i, '\t', np.mean(total_buff))
            saved_p = np.append(saved_p, np.mean(total_buff))

        if i >= 40000:
            aa = False
    #print('Loop ended')

    return (lesson_perf_buff, saved_p, agent)
def run_dms(seed=1, viz_converged=True):
    np.random.seed(seed)
    n_switches = 5  # i.e. 6 stimulus sets, 3 stimuli per set
    n_stim = 3

    dms = tasks.DMS(n_stim=n_stim, n_switches=n_switches)
    # init the agent
    agent = workmate.WorkMATe(dms, nblocks=2)

    ### Initialize training:
    # buffer to store 'the moment of switching' (=convergence)
    iswi = np.zeros(n_switches + 1)
    # buffer for last 500 trials:
    total_buff = np.zeros(500)
    # buffer for performance immediately after a switch
    swiperf = np.nan * np.ones((n_switches + 1, total_buff.size))
    # counters
    i = 0
    i_ = 0

    while True:
        # run trial, get performance
        r = _run_trial(agent, dms)
        # increase i
        i += 1
        # was the trial correct?
        corr = (r >= dms.bigreward)
        total_buff[0] = corr
        total_buff = np.roll(total_buff, 1)

        # if the past 100 trials were 85% correct, set is 'learned'
        if np.mean(total_buff[:100]) >= .85:
            print('Convergence at {}\tSwitch to set {}'.format(
                i, dms.setnr + 1))
            iswi[dms.setnr] = i
            # if criterion reached in less than 500 trials,
            # 'performanc post-switch' hasn't been logged yet -- do that now,
            # using only the trials with this set:
            if i < i_ + 500:
                swiperf[dms.setnr, :(i - i_)] = total_buff[:(
                    i - i_)]  # leaves nans for the rest of performance

            if dms.setnr == 5:
                break

            dms.switch_set()
            total_buff *= 0  # reset performance buffer
            i_ = i

        # @ iswi + 500: store post-switch performance:
        if i == i_ + 500:
            swiperf[dms.setnr, :] = total_buff

        # print progress:
        if i % trial_print == 0:
            print(i, '\t', np.mean(total_buff))
    return (iswi, swiperf)
def run_abba(seed):
    np.random.seed(seed)
    # create abba environment
    abba = tasks.ABBA_recog()
    # create agent:
    nhidden = 30  #number of hidden units
    agent = workmate.WorkMATe(abba, nhidden=nhidden)

    # buffers; total & per trial type
    total_buff = np.zeros(100)
    trtype_buff = np.zeros((4, total_buff.size))
    res = []
    i = 0

    abba_i = np.zeros(5)
    while True:
        r = _run_trial(agent, abba, p=1 - np.mean(trtype_buff, axis=1))
        i += 1

        # store whether it was correct
        tp = abba.trial_type
        corr = (r >= abba.bigreward)
        total_buff[0] = corr
        total_buff = np.roll(total_buff, 1)
        trtype_buff[tp, 0] = corr
        trtype_buff[tp, :] = np.roll(trtype_buff[tp, :], 1)

        # 'convergence' on individual trial types:
        if abba_i[tp] == 0 and np.mean(trtype_buff[tp, :]) > 0.75:
            print("Done with ", tp)
            abba_i[tp] = i

        # criterion for full convergence
        if np.all(np.mean(trtype_buff, axis=1) > .75
                  ) and np.mean(total_buff) > .85:
            print('Done.', i)
            abba_i[-1] = i
            break

        # Uncomment this for dynamic condition:
        # if i % 3000== 0:
        #     abba.switch_set()

        # print progress.
        abba_print = 1000
        if i % abba_print == 0:
            print(i,
                  '\t'.join([str(v) for v in np.mean(trtype_buff, axis=1)]),
                  end=' ')
            print('\t', np.mean(total_buff))
            step_arr = np.r_[np.mean(total_buff), np.mean(trtype_buff, axis=1)]
            res += [step_arr]
    # return np.array(res)
    return abba_i
def run_ggsa(seed=1, prefixed_gates=False):
    np.random.seed(seed)
    # create ggsa
    ggsa = tasks.GGSA()
    # create agent
    if prefixed_gates:
        agent = workmate_PG.WorkMATePG(ggsa)
    else:
        agent = workmate.WorkMATe(ggsa)

    # 2 buffers: overall & per trial-type
    total_buff = np.zeros(100)
    trtype_buff = np.zeros((2, total_buff.size))
    i = 0
    while True:
        r = _run_trial(agent, ggsa)
        i += 1

        # store 'correct' in buffer(s)
        tp = ggsa.trial_type
        corr = (r >= ggsa.bigreward)
        total_buff[0] = corr
        total_buff = np.roll(total_buff, 1)
        trtype_buff[tp, 0] = corr
        trtype_buff[tp, :] = np.roll(trtype_buff[tp, :], 1)

        # check whether crit is met:
        separate_perf = np.mean(trtype_buff, axis=1)
        total_perf = np.mean(total_buff)
        if (np.all(separate_perf) > .75) and (total_perf > .85):
            print('Converged after {}'.format(i))
            print(i, '\t'.join([str(v) for v in np.mean(trtype_buff, axis=1)]))
            print("=========")
            break
        # print progress.
        if i == 250:
            print('\033[1m' + 'Trial', '\t', 'Perf1', '\t', 'Perf2', '\t',
                  'TotalPerf' + '\033[0m')
        if i % 250 == 0:
            print(
                i,
                '\t',
                '\t'.join([str(v) for v in np.mean(trtype_buff, axis=1)]),
                end=' '
            )  #print trial number, the mean performance on both trial types
            print('\t', np.mean(total_buff))  #print toal performance
    return i
Example #5
0
def run_otax(seed=1):
    """
    12-AX, trial-based with curriculum learning
    """
    np.random.seed(seed)
    otax = tasks.OneTwoAX()
    agent = workmate.WorkMATe(otax)
    total_buff      = np.zeros(100)
    lesson_perf_buff = np.zeros((2, 5))

    i = 0    # how many trials were run?
    k = 0  # how many trials were run at the current level?

    while True:
        # run trial, get performance
        r = _run_trial(agent, otax)
        # increase i
        i += 1
        k += (1 if otax.trial_at_highest_level else 0)
        # store 'correct' in buffer(s)
        corr = ( r >= otax.bigreward )
        total_buff[0] = corr
        total_buff = np.roll(total_buff, 1)

        # check whether crit is met:
        if np.mean(total_buff) > .85:
            print('Converged at difficulty {}'.format(otax.difficulty))
            print('after {} /// {} trials'.format(i, k))
            lesson_perf_buff[:, otax.difficulty] = i,k
            print(lesson_perf_buff)

            if otax.difficulty == 4:
                break
            otax.difficulty += 1
            total_buff *= 0 
            i = 0
            k = 0
        # print progress.
        if (i>0) and (i % trial_print == 0):
            print(i, '\t', np.mean(total_buff))
    return lesson_perf_buff
Example #6
0
def run_dms(viz_converged=True,
            agent_type='W',
            print_all='off',
            beta2=1,
            beta3=1,
            set_seed=1):
    plt.close('all')
    #makes the numbers predictable!
    seed = set_seed
    np.random.seed(seed)
    #n_switches = 5 # i.e. 6 stimulus sets, 3 stimuli per set

    dms = tasks.DMS(n_stim=n_stim, n_switches=n_switches)

    # init the agent
    #enable the option of choosing another agent to execute the tasks
    if agent_type == 'W2':
        agent = workmate.WorkMATe(dms, nblocks=2, nhidden=30, block_size=30)
        print('Wouters agent with blocksize 30')
    elif agent_type == 'W40':
        agent = workmate.WorkMATe(dms, nblocks=2, nhidden=40, block_size=40)
        print('Wouters agent with blocksize 40')
    elif agent_type == 'W2S':
        agent = workmate_sparse.WorkMATe(dms, nblocks=2, block_size=30)
        print('Wouters agent with sparse inputs')
        #print('Wouters agent with sparse inputs and blocksize 30')
    elif agent_type == 'L40':
        agent = workmate_LJ02_match.WorkMATe(dms, nblocks=2)
        print('Agent with 40 layer, sparse inputs, different match')
    elif agent_type == 'L01':
        agent = workmate_LJ01.WorkMATe(dms, nblocks=2)
        print('Agent with random layer L and 1-on-1 S projection')
    elif agent_type == 'L03':
        agent = workmate_LJ03.WorkMATe(dms, nblocks=2)
        print('Agent with random layer L and S')
    elif agent_type == 'L02':
        agent = workmate_LJ02.WorkMATe(dms, nblocks=2)
        print('Agent with random layer L and 1-on-1 S projection')
    elif agent_type == 'L07':
        agent = workmate_LJ07b.WorkMATe(dms,
                                        nblocks=2,
                                        beta2=beta2,
                                        beta3=beta3)
        print('Agent with extra layer l that acts as a hidden layer!!!!')
    elif agent_type == 'L06':
        agent = workmate_LJ06.WorkMATe(dms, nblocks=2)
        print('L06: Agent with learned extra layer and random S projection')
    elif agent_type == 'L':
        agent = workmate_LJ.WorkMATe(dms, nblocks=2)
        print('Agent with extra layer')
    else:
        agent = workmate.WorkMATe(dms, nblocks=2, beta2=beta2, beta3=beta3)
        print('Wouters agent')

    ### Initialize training:
    # buffer to store 'the moment of switching' (=convergence)
    iswi = np.zeros((n_switches + 1))
    # buffer for last 500 trials:
    saved_p = np.zeros(1)
    total_buff = np.zeros(500)
    # buffer for performance immediately after a switch
    swiperf = np.nan * np.ones((n_switches + 1, total_buff.size))

    # counters
    i = 0
    i_ = 0

    aa = True
    while aa:
        # run trial, get performance
        r = _run_trial(agent, dms)
        # increase i
        i += 1
        # was the trial correct?
        corr = (r >= dms.bigreward)
        total_buff[0] = corr
        total_buff = np.roll(total_buff, 1)

        # if the past 100 trials were 85% correct, set is 'learned'
        if np.mean(total_buff[:100]) >= conv_crit:
            print('Convergence at {}\tSwitch to set {}'.format(
                i, dms.setnr + 1))
            iswi[dms.setnr] = i
            # if criterion reached in less than 500 trials,
            # 'performanc post-switch' hasn't been logged yet -- do that now,
            # using only the trials with this set:
            if i < i_ + 500:
                swiperf[dms.setnr, :(i - i_)] = total_buff[:(
                    i - i_)]  # leaves nans for the rest of performance

            if dms.setnr == 5:
                break

            dms.switch_set()
            total_buff *= 0  # reset performance buffer
            i_ = i

        # @ iswi + 500: store post-switch performance:
        if i == i_ + 500:
            swiperf[dms.setnr, :] = total_buff

        # print progress:
        if i % trial_print == 0:
            #print performance in a list
            if print_all == 'on':
                print(i, '\t', np.mean(total_buff))
            saved_p = np.append(saved_p, np.mean(total_buff))

        if i >= 30000:
            aa = False
    print('Loop ended')

    plot_dms(trial_print, saved_p, iswi, n_switches, conv_crit)
    return (saved_p, iswi, agent)
Example #7
0
def run_ggsa(seed=1, prefixed_gates=False, agent_type='W'):
    np.random.seed(seed)
    # create ggsa
    ggsa = tasks.GGSA()
    # create agent
    #enable the option of choosing another agent to execute the tasks
    if agent_type == 'L':
        agent = workmate_LJ.WorkMATe(ggsa)
        print('Liekes agent')
    else:
        agent = workmate.WorkMATe(ggsa)
        print('Wouters agent')

    if prefixed_gates:
        agent = workmate_PG.WorkMATePG(ggsa)
    else:
        agent = workmate.WorkMATe(ggsa)

    # 2 buffers: overall & per trial-type
    saved_p = np.zeros(3)
    saved_i = np.zeros(1)
    total_buff = np.zeros(100)
    trtype_buff = np.zeros((2, total_buff.size))
    i = 0

    aa = True
    while aa:
        r = _run_trial(agent, ggsa)
        i += 1

        # store 'correct' in buffer(s)
        tp = ggsa.trial_type
        corr = (r >= ggsa.bigreward)
        total_buff[0] = corr
        total_buff = np.roll(total_buff, 1)
        trtype_buff[tp, 0] = corr
        trtype_buff[tp, :] = np.roll(trtype_buff[tp, :], 1)

        # check whether crit is met:
        separate_perf = np.mean(trtype_buff, axis=1)
        total_perf = np.mean(total_buff)
        if (np.all(separate_perf) > .75) and (total_perf > .85):
            print('Converged after {}'.format(i))
            print(i, '\t'.join([str(v) for v in np.mean(trtype_buff, axis=1)]))
            print("=========")
            break
        # print progress.
        if i == 250:
            print('\033[1m' + 'Trial', '\t', 'Perf1', '\t', 'Perf2', '\t',
                  'TotalPerf' + '\033[0m')
        if i % 250 == 0:
            print(
                i,
                '\t',
                '\t'.join([str(v) for v in np.mean(trtype_buff, axis=1)]),
                end=' '
            )  #print trial number, the mean performance on both trial types
            perf = np.append(np.mean(trtype_buff, axis=1), np.mean(total_buff))
            saved_p = np.vstack((saved_p, perf))
            saved_i = np.append(saved_i, i)
            print('\t', np.mean(total_buff))  #print total performance

        if i >= 20000:
            aa = False
    print('Loop ended')

    plot_ggsa(saved_i, saved_p)
    return agent


#if __name__ == '__main__':
#run_dms(seed=1)
#run_otax(seed=4)
#run_abba(seed=5)
#run_ggsa(2)
#run_ggsa(2,prefixed_gates=True)
Example #8
0
def run_abba(agent_type='W'):
    #np.random.seed()
    # create abba environment
    abba = tasks.ABBA_recog()
    # create agent:
    nhidden = 30  #number of hidden units

    # init the agent
    #enable the option of choosing another agent to execute the tasks
    if agent_type == 'L':
        agent = workmate_LJ.WorkMATe(abba, nhidden=nhidden)
        print('Liekes agent')
    else:
        agent = workmate.WorkMATe(abba, nhidden=nhidden)
        print('Wouters agent')

    # buffers; total & per trial type
    saved_p = np.zeros(4)
    saved_i = np.zeros(1)
    total_buff = np.zeros(100)
    trtype_buff = np.zeros((4, total_buff.size))
    res = []
    i = 0

    abba_i = np.zeros(5)
    aa = True
    while aa:
        r = _run_trial(agent, abba, p=1 - np.mean(trtype_buff, axis=1))
        i += 1

        # store whether it was correct
        tp = abba.trial_type
        corr = (r >= abba.bigreward)
        total_buff[0] = corr
        total_buff = np.roll(total_buff, 1)
        trtype_buff[tp, 0] = corr
        trtype_buff[tp, :] = np.roll(trtype_buff[tp, :], 1)

        # 'convergence' on individual trial types:
        x = np.mean(trtype_buff[tp, :])
        if abba_i[tp] == 0 and x > 0.75:
            print("Done with ", tp)
            abba_i[tp] = i

        # criterion for full convergence
        if np.all(np.mean(trtype_buff, axis=1) > .75
                  ) and np.mean(total_buff) > .85:
            print('Done.', i)
            abba_i[-1] = i
            break

        # Uncomment this for dynamic condition:
        #if i % 3000== 0:
        #abba.switch_set()

        # print progress.
        abba_print = 1000
        if i % abba_print == 0:
            print(i,
                  '\t'.join([str(v) for v in np.mean(trtype_buff, axis=1)]),
                  end=' ')
            saved_p = np.vstack((saved_p, np.mean(trtype_buff, axis=1)))
            saved_i = np.append(saved_i, i)
            print('\t', np.mean(total_buff))
            step_arr = np.r_[np.mean(total_buff), np.mean(trtype_buff, axis=1)]
            res += [step_arr]
    # return np.array(res)

        if i >= 200000:
            aa = False
    print('Loop ended')

    plot_abba(saved_i, saved_p, abba_i)
    return agent