Example #1
0
    def conv_efficient(self, x, w, b, output_size, vec_idx_key, strides=1):
        batches = x.shape[0]
        depth_i = x.shape[1]
        filter_size = w.shape[2]
        depth_o = w.shape[0]

        if 4 == x.ndim:  # 原始规格:
            input_size = x.shape[2]  #
            p = int(((output_size - 1) * strides + filter_size - input_size) /
                    2)  # padding尺寸
            # logger.debug("padding begin..")
            if p > 0:  # 需要padding处理
                x_pad = Tools.padding(x, p, self.dataType)
            else:
                x_pad = x
            st = time.time()
            logger.debug("vecting begin..")
            # 可以根据自己的硬件环境,在三种优化方式中选择较快的一种
            x_col = self.vectorize4conv_batches(x_pad, filter_size,
                                                output_size, strides)
            #x_col = spd.vectorize4conv_batches(x_pad, filter_size, output_size, strides)
            #x_col = vec_by_idx(x_pad, filter_size, filter_size,vec_idx_key,0, strides)

            logger.debug("vecting end.. %f s" % (time.time() - st))
        else:  # x_col规格
            x_col = x

        w_row = w.reshape(depth_o, x_col.shape[1])
        conv = np.zeros((batches, depth_o, (output_size * output_size)),
                        dtype=self.dataType)
        st1 = time.time()
        logger.debug("matmul begin..")
        #不广播,提高处理效率
        for batch in range(batches):
            conv[batch] = Tools.matmul(w_row, x_col[batch]) + b

        logger.debug("matmul end.. %f s" % (time.time() - st1))
        conv_return = conv.reshape(batches, depth_o, output_size, output_size)

        return conv_return
Example #2
0
    def conv4dw(self, x, w, output_size, b=0, strides=1, x_v=False):
        batches = x.shape[0]
        depth_i = x.shape[1]
        filter_size = w.shape[2]  # 过滤器尺寸,对应卷积层误差矩阵尺寸
        x_per_filter = filter_size * filter_size
        depth_o = w.shape[1]

        if False == x_v:  # 原始规格:
            input_size = x.shape[2]  #
            p = int(((output_size - 1) * strides + filter_size - input_size) /
                    2)  # padding尺寸
            if p > 0:  # 需要padding处理
                x_pad = Tools.padding(x, p, self.dataType)
            else:
                x_pad = x
            logger.debug("vec4dw begin..")
            x_col = self.vectorize4convdw_batches(x_pad, filter_size,
                                                  output_size, strides)
            logger.debug("vec4dw end..")
        else:  # x_col规格
            x_col = x

        w_row = w.reshape(batches, depth_o, x_per_filter)
        conv = np.zeros(
            (batches, depth_i, depth_o, (output_size * output_size)),
            dtype=self.dataType)
        logger.debug("conv4dw matmul begin..")
        for batch in range(batches):
            for col in range(depth_i):
                conv[batch, col] = Tools.matmul(w_row[batch], x_col[batch,
                                                                    col])

        conv_sum = np.sum(conv, axis=0)
        # transpose而不是直接reshape避免错位
        conv = conv_sum.transpose(1, 0, 2).reshape(depth_o, depth_i,
                                                   output_size, output_size)

        logger.debug("conv4dw matmul end..")
        return conv, x_col