Example #1
0
def autobk(energy, mu, rbkg=1, nknots=None, group=None, e0=None,
           kmin=0, kmax=None, kw=1, dk=0, win=None, vary_e0=True,
           chi_std=None, nfft=2048, kstep=0.05, _larch=None):
    if _larch is None:
        raise Warning("cannot calculate autobk spline -- larch broken?")

    # get array indices for rkbg and e0: irbkg, ie0
    rgrid = np.pi/(kstep*nfft)
    if rbkg < 2*rgrid: rbkg = 2*rgrid
    irbkg = int(1.01 + rbkg/rgrid)
    if e0 is None:
        e0 = find_e0(energy, mu, group=group, _larch=_larch)
    ie0 = _index_nearest(energy, e0)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    kraw = np.sqrt(ETOK*(energy[ie0:] - e0))
    if kmax is None:
        kmax = max(kraw)
    kout  = kstep * np.arange(int(1.01+kmax/kstep))
    ftwin = kout**kw * ftwindow(kout, xmin=kmin, xmax=kmax,
                                window=win, dx=dk)

    # calc k-value and initial guess for y-values of spline params
    nspline = max(4, min(60, 2*int(rbkg*(kmax-kmin)/np.pi) + 1))
    spl_y  = np.zeros(nspline)
    spl_k  = np.zeros(nspline)
    for i in range(nspline):
        q = kmin + i*(kmax-kmin)/(nspline - 1)
        ik = _index_nearest(kraw, q)
        i1 = min(len(kraw)-1, ik + 5)
        i2 = max(0, ik - 5)
        spl_k[i] = kraw[ik]
        spl_y[i] = (2*mu[ik] + mu[i1] + mu[i2] ) / 4.0
    # get spline represention: knots, coefs, order=3
    # coefs will be varied in fit.
    knots, coefs, order = splrep(spl_k, spl_y)

    # set fit parameters from initial coefficients
    fparams = Parameters()
    for i, v in enumerate(coefs):
        fparams.add("c%i" % i, value=v, vary=i<len(spl_y))

    fitkws = dict(knots=knots, order=order, kraw=kraw, mu=mu[ie0:],
                  irbkg=irbkg, kout=kout, ftwin=ftwin, nfft=nfft)
    # do fit
    fit = Minimizer(__resid, fparams, fcn_kws=fitkws)
    fit.leastsq()

    # write final results
    coefs = [p.value for p in fparams.values()]
    bkg, chi = spline_eval(kraw, mu[ie0:], knots, coefs, order, kout)
    obkg  = np.zeros(len(mu))
    obkg[:ie0] = mu[:ie0]
    obkg[ie0:] = bkg
    if _larch.symtable.isgroup(group):
        setattr(group, 'bkg',  obkg)
        setattr(group, 'chie', mu-obkg)
        setattr(group, 'k',    kout)
        setattr(group, 'chi',  chi)
Example #2
0
 def fft(self, k, chi):
     if self.kwin_array is None:
         self.kwin_array = ftwindow(k, xmin=self.kmin, xmax=self.kmax,
                                    dx=self.dk, dx2=self.dk2,
                                    window=self.window)
     cchi = zeros(self.nfft, dtype='complex128')
     cchi[0:len(chi)] = chi
     out = fft(cchi * self.kwin_array * k**self.kw)
     return self.kstep*sqrt(pi) * out[:self.nfft/2]
Example #3
0
    def ffti(self, chir):
        " reverse FT -- meant to be used internally"
        self.make_karrays()
        if self.rwin is None:
            self.rwin = ftwindow(self.r_, xmin=self.rmin, xmax=self.rmax,
                                 dx=self.dr, dx2=self.dr2, window=self.rwindow)

        cx = chir * self.rwin[:len(chir)] * self.r_[:len(chir)]**self.rw,
        return xafsift_fast(cx, kstep=self.kstep, nfft=self.nfft)
Example #4
0
    def ifft(self, r, chir):
        if self.rwin_array is None:
            self.rwin_array = ftwindow(r, xmin=self.rmin, xmax=self.rmax,
                                       dx=self.dr, dx2=self.dr2,
                                       window=self.rwindow)                    

        cchir = zeros(self.nfft, dtype='complex128')
        cchir[0:len(chir)] = chir
        out = ifft(cchir * self.rwin_array * r**self.rw)
        return sqrt(pi)/(2*self.kstep) * out[:self.nfft/2]
Example #5
0
 def fftf(self, chi, kweight=None):
     """ forward FT -- meant to be used internally.
     chi must be on self.k_ grid"""
     self.make_karrays()
     if self.kwin is None:
         self.kwin = ftwindow(self.k_, xmin=self.kmin, xmax=self.kmax,
                              dx=self.dk, dx2=self.dk2, window=self.window)
     if kweight is None:
         kweight = self.get_kweight()
     cx = chi * self.kwin[:len(chi)] * self.k_[:len(chi)]**kweight
     return xafsft_fast(cx, kstep=self.kstep, nfft=self.nfft)
Example #6
0
 def fft(self, k, chi):
     if self.kwin_array is None:
         self.kwin_array = ftwindow(k,
                                    xmin=self.kmin,
                                    xmax=self.kmax,
                                    dx=self.dk,
                                    dx2=self.dk2,
                                    window=self.window)
     cchi = zeros(self.nfft, dtype='complex128')
     cchi[0:len(chi)] = chi
     out = fft(cchi * self.kwin_array * k**self.kw)
     return self.kstep * sqrt(pi) * out[:self.nfft / 2]
Example #7
0
    def ifft(self, r, chir):
        if self.rwin_array is None:
            self.rwin_array = ftwindow(r,
                                       xmin=self.rmin,
                                       xmax=self.rmax,
                                       dx=self.dr,
                                       dx2=self.dr2,
                                       window=self.rwindow)

        cchir = zeros(self.nfft, dtype='complex128')
        cchir[0:len(chir)] = chir
        out = ifft(cchir * self.rwin_array * r**self.rw)
        return sqrt(pi) / (2 * self.kstep) * out[:self.nfft / 2]
Example #8
0
def autobk(energy,
           mu,
           rbkg=1,
           nknots=None,
           group=None,
           e0=None,
           kmin=0,
           kmax=None,
           kw=1,
           dk=0,
           win=None,
           vary_e0=True,
           chi_std=None,
           nfft=2048,
           kstep=0.05,
           _larch=None):
    if _larch is None:
        raise Warning("cannot calculate autobk spline -- larch broken?")

    # get array indices for rkbg and e0: irbkg, ie0
    rgrid = np.pi / (kstep * nfft)
    if rbkg < 2 * rgrid: rbkg = 2 * rgrid
    irbkg = int(1.01 + rbkg / rgrid)
    if e0 is None:
        e0 = find_e0(energy, mu, group=group, _larch=_larch)
    ie0 = _index_nearest(energy, e0)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    kraw = np.sqrt(ETOK * (energy[ie0:] - e0))
    if kmax is None:
        kmax = max(kraw)
    kout = kstep * np.arange(int(1.01 + kmax / kstep))
    ftwin = kout**kw * ftwindow(kout, xmin=kmin, xmax=kmax, window=win, dx=dk)

    # calc k-value and initial guess for y-values of spline params
    nspline = max(4, min(60, 2 * int(rbkg * (kmax - kmin) / np.pi) + 1))
    spl_y = np.zeros(nspline)
    spl_k = np.zeros(nspline)
    for i in range(nspline):
        q = kmin + i * (kmax - kmin) / (nspline - 1)
        ik = _index_nearest(kraw, q)
        i1 = min(len(kraw) - 1, ik + 5)
        i2 = max(0, ik - 5)
        spl_k[i] = kraw[ik]
        spl_y[i] = (2 * mu[ik] + mu[i1] + mu[i2]) / 4.0
    # get spline represention: knots, coefs, order=3
    # coefs will be varied in fit.
    knots, coefs, order = splrep(spl_k, spl_y)

    # set fit parameters from initial coefficients
    fparams = Parameters()
    for i, v in enumerate(coefs):
        fparams.add("c%i" % i, value=v, vary=i < len(spl_y))

    fitkws = dict(knots=knots,
                  order=order,
                  kraw=kraw,
                  mu=mu[ie0:],
                  irbkg=irbkg,
                  kout=kout,
                  ftwin=ftwin,
                  nfft=nfft)
    # do fit
    fit = Minimizer(__resid, fparams, fcn_kws=fitkws)
    fit.leastsq()

    # write final results
    coefs = [p.value for p in fparams.values()]
    bkg, chi = spline_eval(kraw, mu[ie0:], knots, coefs, order, kout)
    obkg = np.zeros(len(mu))
    obkg[:ie0] = mu[:ie0]
    obkg[ie0:] = bkg
    if _larch.symtable.isgroup(group):
        setattr(group, 'bkg', obkg)
        setattr(group, 'chie', mu - obkg)
        setattr(group, 'k', kout)
        setattr(group, 'chi', chi)
Example #9
0
def autobk(energy, mu, group=None, rbkg=1, nknots=None, e0=None,
           edge_step=None, kmin=0, kmax=None, kweight=1, dk=0,
           win='hanning', k_std=None, chi_std=None, nfft=2048, kstep=0.05,
           pre_edge_kws=None, debug=False, _larch=None, **kws):

    """Use Autobk algorithm to remove XAFS background
    Options are:
      rbkg -- distance out to which the chi(R) is minimized
    """
    if _larch is None:
        raise Warning("cannot calculate autobk spline -- larch broken?")

    if 'kw' in kws:
        kweight = kws['kw']

    energy = remove_dups(energy)

    # if e0 or edge_step are not specified, get them, either from the
    # passed-in group or from running pre_edge()
    if edge_step is None:
        if _larch.symtable.isgroup(group) and hasattr(group, 'edge_step'):
            edge_step = group.edge_step
    if e0 is None:
        if _larch.symtable.isgroup(group) and hasattr(group, 'e0'):
            e0 = group.e0
    if e0 is None or edge_step is None:
        # need to run pre_edge:
        pre_kws = dict(nnorm=3, nvict=0, pre1=None,
                       pre2=-50., norm1=100., norm2=None)
        if pre_edge_kws is not None:
            pre_kws.update(pre_edge_kws)
        edge_step, e0 = pre_edge(energy, mu, group=group,
                                 _larch=_larch, **pre_kws)

    # get array indices for rkbg and e0: irbkg, ie0
    ie0 = index_nearest(energy, e0)
    rgrid = np.pi/(kstep*nfft)
    if rbkg < 2*rgrid: rbkg = 2*rgrid
    irbkg = int(1.01 + rbkg/rgrid)

    # save ungridded k (kraw) and grided k (kout)
    # and ftwin (*k-weighting) for FT in residual
    kraw = np.sqrt(ETOK*(energy[ie0:] - e0))
    if kmax is None:
        kmax = max(kraw)
    kout  = kstep * np.arange(int(1.01+kmax/kstep), dtype='float64')

    # interpolate provided chi(k) onto the kout grid
    if chi_std is not None and k_std is not None:
        chi_std = np.interp(kout, k_std, chi_std)

    ftwin = kout**kweight * ftwindow(kout, xmin=kmin, xmax=kmax,
                                     window=win, dx=dk)

    # calc k-value and initial guess for y-values of spline params
    nspline = max(4, min(60, 2*int(rbkg*(kmax-kmin)/np.pi) + 1))
    spl_y  = np.zeros(nspline)
    spl_k  = np.zeros(nspline)
    spl_e  = np.zeros(nspline)
    for i in range(nspline):
        q = kmin + i*(kmax-kmin)/(nspline - 1)
        ik = index_nearest(kraw, q)

        i1 = min(len(kraw)-1, ik + 5)
        i2 = max(0, ik - 5)
        spl_k[i] = kraw[ik]
        spl_e[i] = energy[ik+ie0]
        spl_y[i] = (2*mu[ik+ie0] + mu[i1+ie0] + mu[i2+ie0] ) / 4.0

    # get spline represention: knots, coefs, order=3
    # coefs will be varied in fit.
    knots, coefs, order = splrep(spl_k, spl_y)

    # set fit parameters from initial coefficients
    ncoefs = len(coefs)
    params = Group()
    for i in range(ncoefs):
        name = FMT_COEF % i
        p = Parameter(coefs[i], name=name, vary=i<len(spl_y))
        p._getval()
        setattr(params, name, p)

    initbkg, initchi = spline_eval(kraw, mu[ie0:], knots, coefs, order, kout)

    fitkws = dict(ncoefs=len(coefs), chi_std=chi_std,
                  knots=knots, order=order, kraw=kraw, mu=mu[ie0:],
                  irbkg=irbkg, kout=kout, ftwin=ftwin, nfft=nfft)
    # do fit
    fit = Minimizer(__resid, params, fcn_kws=fitkws, _larch=_larch, toler=1.e-4)
    fit.leastsq()

    # write final results
    coefs = [getattr(params, FMT_COEF % i) for i in range(ncoefs)]

    bkg, chi = spline_eval(kraw, mu[ie0:], knots, coefs, order, kout)
    obkg  = np.zeros(len(mu))
    obkg[:ie0] = mu[:ie0]
    obkg[ie0:] = bkg
    if _larch.symtable.isgroup(group):
        group.bkg  = obkg
        group.chie = (mu-obkg)/edge_step
        group.k    = kout
        group.chi  = chi/edge_step
        if debug:
            group.spline_params = params
            ix_bkg = np.zeros(len(mu))
            ix_bkg[:ie0] = mu[:ie0]
            ix_bkg[ie0:] = initbkg
            group.init_bkg = ix_bkg
            group.init_chi = initchi/edge_step
            group.spline_e = spl_e
            group.spline_y = np.array([coefs[i] for i in range(nspline)])
            group.spline_yinit = spl_y