Example #1
0
def test_cftime_type_error():
    times = xr.cftime_range('2000', periods=24, freq='D')
    da = xr.DataArray(np.arange(24), coords=[times], dims='time')

    times_new = xr.cftime_range('2000-01-01T12:00:00', periods=3, freq='D',
                                calendar='noleap')
    with pytest.raises(TypeError):
        da.interp(time=times_new)
Example #2
0
def test_cftime():
    times = xr.cftime_range('2000', periods=24, freq='D')
    da = xr.DataArray(np.arange(24), coords=[times], dims='time')

    times_new = xr.cftime_range('2000-01-01T12:00:00', periods=3, freq='D')
    actual = da.interp(time=times_new)
    expected = xr.DataArray([0.5, 1.5, 2.5], coords=[times_new], dims=['time'])

    assert_allclose(actual, expected)
Example #3
0
def test_cftimeindex_sub_cftimeindex(calendar):
    a = xr.cftime_range('2000', periods=5, calendar=calendar)
    b = a.shift(2, 'D')
    result = b - a
    expected = pd.TimedeltaIndex([timedelta(days=2) for _ in range(5)])
    assert result.equals(expected)
    assert isinstance(result, pd.TimedeltaIndex)
Example #4
0
def test_cftimeindex_sub_timedeltaindex(calendar):
    a = xr.cftime_range('2000', periods=5, calendar=calendar)
    deltas = pd.TimedeltaIndex([timedelta(days=2) for _ in range(5)])
    result = a - deltas
    expected = a.shift(-2, 'D')
    assert result.equals(expected)
    assert isinstance(result, CFTimeIndex)
Example #5
0
def test_cftime_datetime_mean():
    times = cftime_range('2000', periods=4)
    da = DataArray(times, dims=['time'])

    assert da.isel(time=0).mean() == da.isel(time=0)

    expected = DataArray(times.date_type(2000, 1, 2, 12))
    result = da.mean()
    assert_equal(result, expected)

    da_2d = DataArray(times.values.reshape(2, 2))
    result = da_2d.mean()
    assert_equal(result, expected)
Example #6
0
def test_to_datetimeindex(calendar, unsafe):
    index = xr.cftime_range('2000', periods=5, calendar=calendar)
    expected = pd.date_range('2000', periods=5)

    if calendar in _NON_STANDARD_CALENDARS and not unsafe:
        with pytest.warns(RuntimeWarning, match='non-standard'):
            result = index.to_datetimeindex()
    else:
        result = index.to_datetimeindex(unsafe=unsafe)

    assert result.equals(expected)
    np.testing.assert_array_equal(result, expected)
    assert isinstance(result, pd.DatetimeIndex)
Example #7
0
def test_cftime_single_string():
    from cftime import DatetimeProlepticGregorian

    times = xr.cftime_range('2000', periods=24, freq='D')
    da = xr.DataArray(np.arange(24), coords=[times], dims='time')

    times_new = '2000-01-01T12:00'
    actual = da.interp(time=times_new)

    times_new_array = _parse_array_of_cftime_strings(
        np.array(times_new), DatetimeProlepticGregorian)
    expected = xr.DataArray(0.5, coords={'time': times_new_array})

    assert_allclose(actual, expected)
Example #8
0
def test_cftime_list_of_strings():
    from cftime import DatetimeProlepticGregorian

    times = xr.cftime_range('2000', periods=24, freq='D')
    da = xr.DataArray(np.arange(24), coords=[times], dims='time')

    times_new = ['2000-01-01T12:00', '2000-01-02T12:00', '2000-01-03T12:00']
    actual = da.interp(time=times_new)

    times_new_array = _parse_array_of_cftime_strings(
        np.array(times_new), DatetimeProlepticGregorian)
    expected = xr.DataArray([0.5, 1.5, 2.5], coords=[times_new_array],
                            dims=['time'])

    assert_allclose(actual, expected)
def test_calendars(calendar):
    # Limited testing for non-standard calendars
    freq, closed, label, base = '8001T', None, None, 17
    loffset = datetime.timedelta(hours=12)
    xr_index = xr.cftime_range(start='2004-01-01T12:07:01', periods=7,
                               freq='3D', calendar=calendar)
    pd_index = pd.date_range(start='2004-01-01T12:07:01', periods=7,
                             freq='3D')
    da_cftime = da(xr_index).resample(
        time=freq, closed=closed, label=label, base=base, loffset=loffset
    ).mean()
    da_datetime = da(pd_index).resample(
        time=freq, closed=closed, label=label, base=base, loffset=loffset
    ).mean()
    da_cftime['time'] = da_cftime.indexes['time'].to_datetimeindex()
    xr.testing.assert_identical(da_cftime, da_datetime)
Example #10
0
def test_datetime_to_numeric_cftime():
    times = cftime_range('2000', periods=5, freq='7D').values
    result = duck_array_ops.datetime_to_numeric(times, datetime_unit='h')
    expected = 24 * np.arange(0, 35, 7)
    np.testing.assert_array_equal(result, expected)

    offset = times[1]
    result = duck_array_ops.datetime_to_numeric(
        times, offset=offset, datetime_unit='h')
    expected = 24 * np.arange(-7, 28, 7)
    np.testing.assert_array_equal(result, expected)

    dtype = np.float32
    result = duck_array_ops.datetime_to_numeric(
        times, datetime_unit='h', dtype=dtype)
    expected = 24 * np.arange(0, 35, 7).astype(dtype)
    np.testing.assert_array_equal(result, expected)
Example #11
0
def test_datetime_to_numeric_cftime():
    times = xr.cftime_range('2000', periods=5, freq='7D')
    da = xr.DataArray(times, coords=[times], dims=['time'])
    result = utils.datetime_to_numeric(da, datetime_unit='h')
    expected = 24 * xr.DataArray(np.arange(0, 35, 7), coords=da.coords)
    assert_identical(result, expected)

    offset = da.isel(time=1)
    result = utils.datetime_to_numeric(da, offset=offset, datetime_unit='h')
    expected = 24 * xr.DataArray(np.arange(-7, 28, 7), coords=da.coords)
    assert_identical(result, expected)

    dtype = np.float32
    result = utils.datetime_to_numeric(da, datetime_unit='h', dtype=dtype)
    expected = 24 * xr.DataArray(
        np.arange(0, 35, 7), coords=da.coords).astype(dtype)
    assert_identical(result, expected)
def test_resample(freqs, closed, label, base):
    initial_freq, resample_freq = freqs
    start = '2000-01-01T12:07:01'
    index_kwargs = dict(start=start, periods=5, freq=initial_freq)
    datetime_index = pd.date_range(**index_kwargs)
    cftime_index = xr.cftime_range(**index_kwargs)

    loffset = '12H'
    try:
        da_datetime = da(datetime_index).resample(
            time=resample_freq, closed=closed, label=label, base=base,
            loffset=loffset).mean()
    except ValueError:
        with pytest.raises(ValueError):
            da(cftime_index).resample(
                time=resample_freq, closed=closed, label=label, base=base,
                loffset=loffset).mean()
    else:
        da_cftime = da(cftime_index).resample(
            time=resample_freq, closed=closed,
            label=label, base=base, loffset=loffset).mean()
        da_cftime['time'] = da_cftime.indexes['time'].to_datetimeindex()
        xr.testing.assert_identical(da_cftime, da_datetime)
Example #13
0
def test_calendars(calendar):
    # Limited testing for non-standard calendars
    freq, closed, label, base = "8001T", None, None, 17
    loffset = datetime.timedelta(hours=12)
    xr_index = xr.cftime_range(start="2004-01-01T12:07:01",
                               periods=7,
                               freq="3D",
                               calendar=calendar)
    pd_index = pd.date_range(start="2004-01-01T12:07:01", periods=7, freq="3D")
    da_cftime = (da(xr_index).resample(time=freq,
                                       closed=closed,
                                       label=label,
                                       base=base,
                                       loffset=loffset).mean())
    da_datetime = (da(pd_index).resample(time=freq,
                                         closed=closed,
                                         label=label,
                                         base=base,
                                         loffset=loffset).mean())
    # TODO (benbovy - flexible indexes): update when CFTimeIndex is a xarray Index subclass
    da_cftime["time"] = da_cftime.xindexes["time"].to_pandas_index(
    ).to_datetimeindex()
    xr.testing.assert_identical(da_cftime, da_datetime)
Example #14
0
def test_datetime_to_numeric_cftime():
    times = cftime_range("2000", periods=5, freq="7D",
                         calendar="standard").values
    result = duck_array_ops.datetime_to_numeric(times,
                                                datetime_unit="h",
                                                dtype=int)
    expected = 24 * np.arange(0, 35, 7)
    np.testing.assert_array_equal(result, expected)

    offset = times[1]
    result = duck_array_ops.datetime_to_numeric(times,
                                                offset=offset,
                                                datetime_unit="h",
                                                dtype=int)
    expected = 24 * np.arange(-7, 28, 7)
    np.testing.assert_array_equal(result, expected)

    dtype = np.float32
    result = duck_array_ops.datetime_to_numeric(times,
                                                datetime_unit="h",
                                                dtype=dtype)
    expected = 24 * np.arange(0, 35, 7).astype(dtype)
    np.testing.assert_array_equal(result, expected)
Example #15
0
def test_resample(freqs, closed, label, base) -> None:
    initial_freq, resample_freq = freqs
    start = "2000-01-01T12:07:01"
    index_kwargs = dict(start=start, periods=5, freq=initial_freq)
    datetime_index = pd.date_range(**index_kwargs)
    cftime_index = xr.cftime_range(**index_kwargs)

    loffset = "12H"
    try:
        da_datetime = (da(datetime_index).resample(
            time=resample_freq,
            closed=closed,
            label=label,
            base=base,
            loffset=loffset,
        ).mean())
    except ValueError:
        with pytest.raises(ValueError):
            da(cftime_index).resample(
                time=resample_freq,
                closed=closed,
                label=label,
                base=base,
                loffset=loffset,
            ).mean()
    else:
        da_cftime = (da(cftime_index).resample(
            time=resample_freq,
            closed=closed,
            label=label,
            base=base,
            loffset=loffset,
        ).mean())
        # TODO (benbovy - flexible indexes): update when CFTimeIndex is a xarray Index subclass
        da_cftime["time"] = (
            da_cftime.xindexes["time"].to_pandas_index().to_datetimeindex())
        xr.testing.assert_identical(da_cftime, da_datetime)
Example #16
0
def _modeloutputfactory(
    start_time="1950-01-01", end_time="2014-12-31", variable_name="fakevariable"
):
    """Populate xr.Dataset with synthetic output data for testing"""
    start_time = str(start_time)
    end_time = str(end_time)

    np.random.seed(0)
    time = xr.cftime_range(start=start_time, end=end_time, calendar="noleap")
    # make sure that test data range is reasonable for the variable being tested

    low_val = None
    high_val = None
    if variable_name == "tasmax" or variable_name == "tasmin":
        low_val = 160
        high_val = 340
    elif variable_name == "dtr":
        low_val = 1
        high_val = 40
    elif variable_name == "pr":
        low_val = 0.01
        high_val = 1900
    data = np.random.randint(low_val, high_val, len(time)).astype(np.float64)

    out = xr.Dataset(
        {variable_name: (["time", "lon", "lat"], data[:, np.newaxis, np.newaxis])},
        coords={
            "index": time,
            "time": time,
            "lon": (["lon"], [1.0]),
            "lat": (["lat"], [1.0]),
        },
    )
    # need to set variable units to pass xclim 0.29 check on units
    out[variable_name].attrs["units"] = "K"
    return out
def monthly_csv_to_DataArray(df, freq="MS"):
    """Convert dataframes from NOAA catalog items to xr.DataArray.

    Example:
        >>> cat = intake.open_catalog('master.yaml')
        >>> df = cat.climate.NOAA_correlation.read()
        >>> da = monthly_csv_to_DataArray(df)
        >>> da
        <xr.DataArray> ...
    """
    df = df.set_index("year")
    df = df.apply(pd.to_numeric, errors="coerce")
    initial = df.first_valid_index()
    if len(str(initial)) >= 4:
        initial = str(initial)[:4]
    initial = int(initial)
    return xr.DataArray(
        df.values.flatten(),
        dims="time",
        coords={
            "time":
            xr.cftime_range(str(initial), freq=freq, periods=df.values.size)
        },
    )
Example #18
0
def _datafactory(
    x, start_time="1950-01-01", variable_name="fakevariable", lon=1.0, lat=1.0
):
    """Populate xr.Dataset with synthetic data for testing"""
    start_time = str(start_time)
    if x.ndim != 1:
        raise ValueError("'x' needs dim of one")

    time = xr.cftime_range(
        start=start_time, freq="D", periods=len(x), calendar="standard"
    )

    out = xr.Dataset(
        {variable_name: (["time", "lon", "lat"], x[:, np.newaxis, np.newaxis])},
        coords={
            "index": time,
            "time": time,
            "lon": (["lon"], [lon]),
            "lat": (["lat"], [lat]),
        },
    )
    # need to set variable units to pass xclim 0.29 check on units
    out[variable_name].attrs["units"] = "K"
    return out
Example #19
0
def preprocess(ds,varkeep):
    """correct time dimension and drop unwanted variables"""
    
    # Correct time dimension to start in Jan rather than Feb
    if ds.time.values[0].month != 1:
        startyr = str(ds.time.values[0].year)
        correctedtime = xr.cftime_range(start=startyr,end="2005-12-31",freq="MS",calendar="noleap") 
        ds = ds.assign_coords(time=correctedtime) 
        print("\tCorrected Start to: %s; End to: %s" %  (str(ds.time.values[0]),str(ds.time.values[-1])))

    
    # Load proper latitude to accomodate different indexing
    from scipy.io import loadmat
    lat = np.squeeze(loadmat("/home/glliu/01_Data/CESM1_LATLON.mat")['LAT'])
    if np.any(~(lat == ds.lat.values)):
        ds = ds.assign_coords(lat=lat)
        print("\tReassigning latitude values ")
    
    # Drop variables unless it is in "varkeep"
    dsvars = list(ds.variables)
    varrem = [i for i in dsvars if i not in varkeep]
    ds = ds.drop(varrem)
    
    return ds
Example #20
0
def test_cftimeindex_periods_repr(periods):
    """Test that cftimeindex has periods property in repr."""
    index = xr.cftime_range(start="2000", periods=periods)
    repr_str = index.__repr__()
    assert f" length={periods}" in repr_str
Example #21
0
def test_cftimeindex_freq_in_repr(freq, calendar):
    """Test that cftimeindex has frequency property in repr."""
    index = xr.cftime_range(start="2000", periods=3, freq=freq, calendar=calendar)
    repr_str = index.__repr__()
    assert f", freq='{freq}'" in repr_str
Example #22
0
def test_3641():
    times = xr.cftime_range("0001", periods=3, freq="500Y")
    da = xr.DataArray(range(3), dims=["time"], coords=[times])
    da.interp(time=["0002-05-01"])
Example #23
0
def test_cftime_datetime_sub_cftimeindex(calendar):
    a = xr.cftime_range('2000', periods=5, calendar=calendar)
    result = a[0] - a
    expected = pd.TimedeltaIndex([timedelta(days=-i) for i in range(5)])
    assert result.equals(expected)
    assert isinstance(result, pd.TimedeltaIndex)
Example #24
0
def test_to_datetimeindex_out_of_range(calendar):
    index = xr.cftime_range('0001', periods=5, calendar=calendar)
    with pytest.raises(ValueError, match='0001'):
        index.to_datetimeindex()
Example #25
0
def test_multiindex():
    index = xr.cftime_range('2001-01-01', periods=100, calendar='360_day')
    mindex = pd.MultiIndex.from_arrays([index])
    assert mindex.get_loc('2001-01') == slice(0, 30)
Example #26
0
def test_cftimeindex_sub_not_implemented(calendar):
    a = xr.cftime_range("2000", periods=5, calendar=calendar)
    with pytest.raises(TypeError, match="unsupported operand"):
        a - 1
def cftime_index(time_range_kwargs):
    return xr.cftime_range(**time_range_kwargs)
Example #28
0
def test_rounding_methods_against_datetimeindex(freq, method):
    expected = pd.date_range("2000-01-02T01:03:51", periods=10, freq="1777S")
    expected = getattr(expected, method)(freq)
    result = xr.cftime_range("2000-01-02T01:03:51", periods=10, freq="1777S")
    result = getattr(result, method)(freq).to_datetimeindex()
    assert result.equals(expected)
Example #29
0
def test_cftime_datetime_sub_cftimeindex(calendar):
    a = xr.cftime_range("2000", periods=5, calendar=calendar)
    result = a[0] - a
    expected = pd.TimedeltaIndex([timedelta(days=-i) for i in range(5)])
    assert result.equals(expected)
    assert isinstance(result, pd.TimedeltaIndex)
Example #30
0
def test_multiindex():
    index = xr.cftime_range('2001-01-01', periods=100, calendar='360_day')
    mindex = pd.MultiIndex.from_arrays([index])
    assert mindex.get_loc('2001-01') == slice(0, 30)
Example #31
0
def test_to_datetimeindex_feb_29(calendar):
    index = xr.cftime_range('2001-02-28', periods=2, calendar=calendar)
    with pytest.raises(ValueError, match='29'):
        index.to_datetimeindex()
Example #32
0
def test_to_datetimeindex_out_of_range(calendar):
    index = xr.cftime_range('0001', periods=5, calendar=calendar)
    with pytest.raises(ValueError, match='0001'):
        index.to_datetimeindex()
Example #33
0
def test_cftimeindex_repr_formatting(periods, expected):
    """Test that cftimeindex.__repr__ is formatted similar to pd.Index.__repr__."""
    index = xr.cftime_range(start="2000", periods=periods, freq="D")
    expected = dedent(expected)
    assert expected == repr(index)
Example #34
0
def test_cftime_index_unchanged():
    """Tests that a CFTime index going through convert time is unchanged."""
    inits = xr.cftime_range("1990", "2000", freq="Y", calendar="noleap")
    da = xr.DataArray(np.random.rand(len(inits)), dims="init", coords=[inits])
    new_inits = convert_time_index(da, "init", "")
    assert_allclose(new_inits.init, da.init)
Example #35
0
def test_cftime_datetime_mean_dask_error():
    times = cftime_range('2000', periods=4)
    da = DataArray(times, dims=['time']).chunk()
    with pytest.raises(NotImplementedError):
        da.mean()
Example #36
0
def test_cftimeindex_shift_invalid_freq():
    index = xr.cftime_range('2000', periods=3)
    with pytest.raises(TypeError):
        index.shift(1, 1)
Example #37
0
def test_rounding_methods_invalid_freq(method):
    index = xr.cftime_range("2000-01-02T01:03:51", periods=10, freq="1777S")
    with pytest.raises(ValueError, match="fixed"):
        getattr(index, method)("MS")
Example #38
0
def test_cftime_to_non_cftime_error():
    times = xr.cftime_range('2000', periods=24, freq='D')
    da = xr.DataArray(np.arange(24), coords=[times], dims='time')

    with pytest.raises(TypeError):
        da.interp(time=0.5)
Example #39
0
def test_distant_cftime_datetime_sub_cftimeindex(calendar):
    a = xr.cftime_range("2000", periods=5, calendar=calendar)
    with pytest.raises(ValueError, match="difference exceeds"):
        a.date_type(1, 1, 1) - a
Example #40
0
def missing_any(da, freq, **indexer):
    r"""Return a boolean DataArray indicating whether there are missing days in the resampled array.

    Parameters
    ----------
    da : DataArray
      Input array at daily frequency.
    freq : str
      Resampling frequency.
    **indexer : {dim: indexer, }, optional
      Time attribute and values over which to subset the array. For example, use season='DJF' to select winter values,
      month=1 to select January, or month=[6,7,8] to select summer months. If not indexer is given, all values are
      considered.

    Returns
    -------
    out : DataArray
      A boolean array set to True if any month or year has missing values.
    """
    from . import generic

    if "-" in freq:
        pfreq, anchor = freq.split("-")
    else:
        pfreq = freq

    # Compute the number of days in the time series during each period at the given frequency.
    selected = generic.select_time(da, **indexer)
    if selected.time.size == 0:
        raise ValueError("No data for selected period.")

    c = selected.notnull().resample(time=freq).sum(dim="time")

    # Otherwise simply use the start and end dates to find the expected number of days.
    if pfreq.endswith("S"):
        start_time = c.indexes["time"]
        end_time = start_time.shift(1, freq=freq)
    else:
        end_time = c.indexes["time"]
        start_time = end_time.shift(-1, freq=freq)

    if indexer:
        # Create a full synthetic time series and compare the number of days with the original series.
        t0 = str(start_time[0].date())
        t1 = str(end_time[-1].date())
        if isinstance(c.indexes["time"], xr.CFTimeIndex):
            cal = da.time.encoding.get("calendar")
            t = xr.cftime_range(t0, t1, freq="D", calendar=cal)
        else:
            t = pd.date_range(t0, t1, freq="D")

        sda = xr.DataArray(data=np.empty(len(t)),
                           coords={"time": t},
                           dims=("time", ))
        st = generic.select_time(sda, **indexer)
        sn = st.notnull().resample(time=freq).sum(dim="time")
        miss = sn != c
        return miss

    n = (end_time - start_time).days
    nda = xr.DataArray(n.values, coords={"time": c.time}, dims="time")
    return c != nda
Example #41
0
def test_cftimeindex_shift_invalid_n():
    index = xr.cftime_range("2000", periods=3)
    with pytest.raises(TypeError):
        index.shift("a", "D")
Example #42
0
def test_cftimeindex_repr_101_shorter(periods):
    index_101 = xr.cftime_range(start="2000", periods=101)
    index_periods = xr.cftime_range(start="2000", periods=periods)
    index_101_repr_str = index_101.__repr__()
    index_periods_repr_str = index_periods.__repr__()
    assert len(index_101_repr_str) < len(index_periods_repr_str)
Example #43
0
def test_cftimeindex_shift_invalid_freq():
    index = xr.cftime_range('2000', periods=3)
    with pytest.raises(TypeError):
        index.shift(1, 1)
Example #44
0
def test_infer_freq(freq, calendar):
    indx = xr.cftime_range("2000-01-01", periods=3, freq=freq, calendar=calendar)
    out = xr.infer_freq(indx)
    assert out == freq
Example #45
0
def test_to_datetimeindex_feb_29(calendar):
    index = xr.cftime_range('2001-02-28', periods=2, calendar=calendar)
    with pytest.raises(ValueError, match='29'):
        index.to_datetimeindex()
Example #46
0
def test_cftimeindex_calendar_property(calendar, expected):
    index = xr.cftime_range(start="2000", periods=3, calendar=calendar)
    assert index.calendar == expected
Example #47
0
def test_cftime_to_non_cftime_error():
    times = xr.cftime_range("2000", periods=24, freq="D")
    da = xr.DataArray(np.arange(24), coords=[times], dims="time")

    with pytest.raises(TypeError):
        da.interp(time=0.5)
Example #48
0
def test_cftimeindex_calendar_repr(calendar, expected):
    """Test that cftimeindex has calendar property in repr."""
    index = xr.cftime_range(start="2000", periods=3, calendar=calendar)
    repr_str = index.__repr__()
    assert f" calendar='{expected}'" in repr_str
    assert "2000-01-01 00:00:00, 2000-01-02 00:00:00" in repr_str
Example #49
0
    def make_initialized_control(self):
        """Generates initialized ensembles and a control simulation, mimicking a
        perfect-model experiment."""
        self.ds = xr.Dataset()
        self.control = xr.Dataset()
        self.nmember = 5
        self.ninit = 6
        self.nlead = 10
        self.iterations = ITERATIONS
        self.nx = 72
        self.ny = 36
        self.control_start = 3000
        self.control_end = 3300
        self.ntime = self.control_end - self.control_start
        self.client = None

        FRAC_NAN = 0.0

        times = xr.cftime_range(
            start=str(self.control_start),
            periods=self.ntime,
            freq="YS",
            calendar="noleap",
        )
        leads = np.arange(1, 1 + self.nlead)
        members = np.arange(1, 1 + self.nmember)
        inits = xr.cftime_range(
            start=str(self.control_start),
            periods=self.ninit,
            freq="10YS",
            calendar="noleap",
        )

        lons = xr.DataArray(
            np.linspace(0.5, 359.5, self.nx),
            dims=("lon", ),
            attrs={
                "units": "degrees east",
                "long_name": "longitude"
            },
        )
        lats = xr.DataArray(
            np.linspace(-89.5, 89.5, self.ny),
            dims=("lat", ),
            attrs={
                "units": "degrees north",
                "long_name": "latitude"
            },
        )
        self.ds["var"] = xr.DataArray(
            randn(
                (self.nmember, self.ninit, self.nlead, self.nx, self.ny),
                frac_nan=FRAC_NAN,
            ),
            coords={
                "member": members,
                "init": inits,
                "lon": lons,
                "lat": lats,
                "lead": leads,
            },
            dims=("member", "init", "lead", "lon", "lat"),
            name="var",
            attrs={
                "units": "var units",
                "description": "a description"
            },
        )
        self.control["var"] = xr.DataArray(
            randn((self.ntime, self.nx, self.ny), frac_nan=FRAC_NAN),
            coords={
                "lon": lons,
                "lat": lats,
                "time": times
            },
            dims=("time", "lon", "lat"),
            name="var",
            attrs={
                "units": "var units",
                "description": "a description"
            },
        )

        self.ds.attrs = {"history": "created for xarray benchmarking"}
        self.ds.lead.attrs["units"] = "years"
        self.control.time.attrs["units"] = "years"
Example #50
0
def test_cftime_datetime_mean_dask_error():
    times = cftime_range('2000', periods=4)
    da = DataArray(times, dims=['time']).chunk()
    with pytest.raises(NotImplementedError):
        da.mean()