Example #1
0
def run():
    user_ms = xdl.ModelServer(
        "user_graph", user_graph_train, xdl.DataType.float,
        xdl.ModelServer.Forward.UniqueCache(xdl.get_task_num()),
        xdl.ModelServer.Backward.UniqueCache(xdl.get_task_num()))
    xdl.current_env().start_model_server(user_ms)
    ad_ms = xdl.ModelServer(
        "ad_graph", ad_graph_train, xdl.DataType.float,
        xdl.ModelServer.Forward.UniqueCache(xdl.get_task_num()),
        xdl.ModelServer.Backward.UniqueCache(xdl.get_task_num()))
    xdl.current_env().start_model_server(ad_ms)
    batch = reader().read()

    user0 = xdl.embedding("user0",
                          batch["user0"],
                          xdl.TruncatedNormal(stddev=0.001),
                          16,
                          2 * 1024 * 1024,
                          "sum",
                          vtype="hash")

    user1 = xdl.embedding("user1",
                          batch["user1"],
                          xdl.TruncatedNormal(stddev=0.001),
                          16,
                          2 * 1024 * 1024,
                          "sum",
                          vtype="hash")

    ad0 = batch["ad0"]
    ad1 = batch["ad1"]
    img0 = user_ms(batch["user_img"].ids)
    ids0 = xdl.py_func(to_tf_segment_id, [batch["user_img"].segments],
                       [np.int32])[0]
    img1 = ad_ms(batch["ad_img"].ids)
    ids1 = xdl.py_func(to_tf_segment_id, [batch["ad_img"].segments],
                       [np.int32])[0]
    label = batch['label']
    loss = ams_main(main_model)(user0,
                                user1,
                                ad0,
                                ad1,
                                label,
                                ids0,
                                ids1,
                                gear_inputs=[img0, img1])

    optimizer = xdl.Adam(0.0005).optimize()

    run_ops = [loss, optimizer]

    sess = xdl.TrainSession([])
    while not sess.should_stop():
        values = sess.run(run_ops)
        if values is not None:
            print 'loss: ', values[0]
Example #2
0
def train():
    images, labels = xdl.py_func(read_train, [],
                                 output_type=[np.float32, np.float32])
    images_test, labels_test = xdl.py_func(
        read_test, [], output_type=[np.float32, np.float32])
    with xdl.model_scope('train'):
        loss = model(images, labels)
        train_op = xdl.Adagrad(0.5).optimize()
        train_sess = xdl.TrainSession()

    with xdl.model_scope('test'):
        accuracy = eval_model(images_test, labels_test)
        eval_sess = xdl.TrainSession()
    for _ in range(100):
        for _ in range(1000):
            train_sess.run(train_op)

        print("accuracy %s" % eval_sess.run(accuracy))
Example #3
0
 def _py_func(self, fn, sparse_cnt=7):
     types = []
     for _ in range(sparse_cnt):
         types.extend([np.int64, np.float32, np.int32])
     types.extend([np.float32, np.float32, np.int32])
     types.extend([np.int32 for _ in range(5)])
     datas = xdl.py_func(fn, [], output_type=types)
     sparse_tensors = []
     for i in range(sparse_cnt):
         sparse_tensors.append(xdl.SparseTensor(
                 datas[3 * i], datas[3 * i + 1], datas[3 * i + 2]))
     return sparse_tensors + datas[sparse_cnt * 3:]
 def _py_func(self, fn, sparse_cnt=7):
     types = []
     for _ in range(sparse_cnt):
         types.extend([np.int64, np.float32, np.int32])
     types.extend([np.float32, np.float32, np.int32])
     types.extend([np.int32 for _ in range(8)])
     datas = xdl.py_func(fn, [], output_type=types)
     sparse_tensors = []
     for i in range(sparse_cnt):
         sparse_tensors.append(
             xdl.SparseTensor(datas[3 * i], datas[3 * i + 1],
                              datas[3 * i + 2]))
     return sparse_tensors + datas[sparse_cnt * 3:]
Example #5
0
def train():
    images, labels = xdl.py_func(read_train, [],
                                 output_type=[np.float32, np.float32])
    images_test, labels_test = xdl.py_func(
        read_test, [], output_type=[np.float32, np.float32])
    with xdl.model_scope('train'):
        loss = model(images, labels)
        train_op = xdl.Adagrad(0.5).optimize()
        if xdl.get_task_index() == 0:
            ckpt_hook = xdl.CheckpointHook(1000)
            train_sess = xdl.TrainSession(hooks=[ckpt_hook])
        else:
            train_sess = xdl.TrainSession()

    with xdl.model_scope('test'):
        accuracy = eval_model(images_test, labels_test)
        eval_sess = xdl.TrainSession()
    for _ in range(100):
        for _ in range(1000):
            train_sess.run(train_op)

        print("accuracy %s" % eval_sess.run(accuracy))
Example #6
0
def train():
    images, labels = xdl.py_func(read_train, [], output_type=[
                                 np.float32, np.float32])
    images_test, labels_test = xdl.py_func(
        read_test, [], output_type=[np.float32, np.float32])
    with xdl.model_scope('train'):
      loss = model(images, labels)
      train_op = xdl.Adagrad(0.5).optimize()
      if xdl.get_task_index() == 0:
          ckpt_hook = xdl.CheckpointHook(1000)
          train_sess = xdl.TrainSession(hooks=[ckpt_hook])
      else:
          train_sess = xdl.TrainSession()

    with xdl.model_scope('test'):
      accuracy = eval_model(images_test, labels_test)
      eval_sess = xdl.TrainSession()
    for _ in range(100):
        for _ in range(1000):
            train_sess.run(train_op)

        print("accuracy %s" % eval_sess.run(accuracy))
Example #7
0
def run():
  user_ms = xdl.ModelServer(
      "user_graph", user_graph_train, xdl.DataType.float,
      xdl.ModelServer.Forward.UniqueCache(xdl.get_task_num()),
      xdl.ModelServer.Backward.UniqueCache(xdl.get_task_num()))
  xdl.current_env().start_model_server(user_ms)
  ad_ms = xdl.ModelServer(
      "ad_graph", ad_graph_train, xdl.DataType.float,
      xdl.ModelServer.Forward.UniqueCache(xdl.get_task_num()),
      xdl.ModelServer.Backward.UniqueCache(xdl.get_task_num()))
  xdl.current_env().start_model_server(ad_ms)
  batch = reader().read()

  user0 = xdl.embedding("user0", batch["user0"], xdl.TruncatedNormal(stddev=0.001),
                        16, 2 * 1024 * 1024, "sum", vtype="hash")

  user1 = xdl.embedding("user1", batch["user1"], xdl.TruncatedNormal(stddev=0.001),
                        16, 2 * 1024 * 1024, "sum", vtype="hash")

  ad0 = batch["ad0"]
  ad1 = batch["ad1"]
  img0 = user_ms(batch["user_img"].ids)
  ids0 = xdl.py_func(to_tf_segment_id, [batch["user_img"].segments], [np.int32])[0]
  img1 = ad_ms(batch["ad_img"].ids)
  ids1 = xdl.py_func(to_tf_segment_id, [batch["ad_img"].segments], [np.int32])[0]
  label = batch['label']
  loss = ams_main(main_model)(user0, user1, ad0, ad1, label, ids0, ids1, gear_inputs=[img0, img1])

  optimizer = xdl.Adam(0.0005).optimize()

  run_ops = [loss, optimizer]

  sess = xdl.TrainSession([])
  while not sess.should_stop():
    values = sess.run(run_ops)
    if values is not None:
      print 'loss: ', values[0]
Example #8
0
    def next_batch(self):
        """
        data[0] -> click_seq
        data[1] -> itemid
        data[2] -> label
        :return:
        """
        types = []
        for _ in range(2): #for click_seqs and itemid
            types.extend([np.int32, np.float32, np.int32])
        #types.append(np.int32)  #for itemid
        types.append(np.float32)  # for label
        types.append(np.int32)  # for click seq
        types.append(np.int32)  # for itemid

        datas =xdl.py_func(self.read_and_parse_data, [], output_type=types)
        sparse_cnt = 2  #only click_seq and itemid is sparse
        sparse_tensors = []
        for i in range(sparse_cnt):
            sparse_tensors.append(xdl.SparseTensor(
                datas[3 * i], datas[3 * i + 1],
                datas[3 * i + 2]))  # a batch of sparse examples .  ids/values/segments_index
        return sparse_tensors + datas[sparse_cnt * 3:]  #5 emelemts left
 def test_py_func(self):
   op = xdl.py_func(func, [[10, 20, 30], [1, 2, 3]], [np.int64])
   rst = xdl.execute(op)
   self.assertTrue((rst == np.array([21, 42, 63])).all())