def post_process(qFrom, args, img_paths, streamQ, fpgaOutputs): numProcessed = 0 labels = xdnn_io.get_labels(args['labels']) zmqPub = None if args['zmqpub']: zmqPub = ZmqResultPublisher(args['deviceID']) goldenMap = None if args['golden']: goldenMap = xdnn_io.getGoldenMap(args['golden']) top5Count = 0 top1Count = 0 (fcWeight, fcBias) = xdnn_io.loadFCWeightsBias(args) bsz = args['batch_sz'] fcOutput = np.empty(( bsz, args['outsz'], ), dtype=np.float32, order='C') start = 0 while True: (sId, img_idx) = qFrom.get() if numProcessed == 0: start = timeit.default_timer() if sId is None or img_idx is None: break imgList = [] for x in np.nditer(img_idx): if x >= 0: imgList.append(img_paths[x]) numProcessed += 1 npout_view = np.frombuffer(fpgaOutputs[sId].get_obj(), dtype=np.float32) xdnn.computeFC(fcWeight, fcBias, npout_view, bsz, args['outsz'], args['fpgaoutsz'], fcOutput) streamQ.put(sId) smaxOutput = xdnn.computeSoftmax(fcOutput) if args['golden']: for i, p in enumerate(imgList): top1Count += xdnn_io.isTopK(smaxOutput[i], goldenMap, p, labels, 1) top5Count += xdnn_io.isTopK(smaxOutput[i], goldenMap, p, labels, 5) if zmqPub is not None: predictMsg = xdnn_io.getClassification(smaxOutput, imgList, labels, zmqPub=True) zmqPub.send(predictMsg) print("%g images/s" % (float(numProcessed) / (time.time() - start))) if args['golden']: print ("\nAverage accuracy (n=%d) Top-1: %.1f%%, Top-5: %.1f%%\n") \ % (numProcessed, float(top1Count)/float(numProcessed)*100., float(top5Count)/float(numProcessed)*100.)
def main(argv): args = xdnn_io.processCommandLine(argv) ret, handles = xdnn.createHandle(args['xclbin'], "kernelSxdnn_0") # ret = xdnn.createHandle(g_xclbin, "kernelSxdnn_0", g_xdnnLib) if ret != 0: sys.exit(1) labels = xdnn_io.get_labels(args['labels']) # TODO dict of tuples instead? fpgaRT = {} fpgaOutputs = {} fcWeights = {} fcBiases = {} netFiles = {} confNames = [] args = args['jsoncfg'] # we do not use other args' keys for netconf_args in args: confName = str(netconf_args['name']) confNames += [confName] # netconf_args['netcfg'] = './data/{}_{}.json'.format(netconf_args['net'], netconf_args['dsp']) fpgaRT[confName] = xdnn.XDNNFPGAOp(handles, netconf_args) netconf_args['in_shape'] = tuple((netconf_args['batch_sz'],) + tuple(fpgaRT[confName].getInputDescriptors().itervalues().next()[1:] )) (fcWeights[confName], fcBiases[confName]) = xdnn_io.loadFCWeightsBias(netconf_args) fpgaOutputs[confName] = np.empty ((netconf_args['batch_sz'], int(netconf_args['fpgaoutsz']),), dtype=np.float32, order='C') netFiles[confName] = str(netconf_args['netcfg']) batchArrays = [] for streamId, netconf_args in enumerate(args): batchArrays.append(np.empty(netconf_args['in_shape'], dtype=np.float32, order='C')) pl = [] img_paths = xdnn_io.getFilePaths(netconf_args['images']) for j, p in enumerate(img_paths[:netconf_args['batch_sz']]): batchArrays[-1][j, ...], _ = xdnn_io.loadImageBlobFromFile(p, netconf_args['img_raw_scale'], netconf_args['img_mean'], netconf_args['img_input_scale'], netconf_args['in_shape'][2], netconf_args['in_shape'][3]) pl.append(p) confName = str(netconf_args['name']) firstInputName = fpgaRT[confName].getInputs().iterkeys().next() firstOutputName = fpgaRT[confName].getOutputs().iterkeys().next() fpgaRT[confName].exec_async({ firstInputName : batchArrays[-1] }, { firstOutputName : fpgaOutputs[confName] }, streamId) for streamId, confName in enumerate(confNames): fpgaRT[confName].get_result (streamId) for netconf_args in args: confName = str(netconf_args['name']) fcOut = np.empty( (netconf_args['batch_sz'], netconf_args['outsz']), dtype=np.float32, order = 'C') xdnn.computeFC (fcWeights[confName], fcBiases[confName], fpgaOutputs[confName], fcOut) softmaxOut = xdnn.computeSoftmax(fcOut) xdnn_io.printClassification(softmaxOut, netconf_args['images'], labels); xdnn.closeHandle()
def main(): args = xdnn_io.processCommandLine() ret, handles = xdnn.createHandle(args['xclbin'], "kernelSxdnn_0") if ret != 0: sys.exit(1) fpgaRT = xdnn.XDNNFPGAOp(handles, args) fcWeight, fcBias = xdnn_io.loadFCWeightsBias(args) img_paths = xdnn_io.getFilePaths(args['images']) fpgaOutput = np.empty(( args['batch_sz'], args['fpgaoutsz'], ), dtype=np.float32, order='C') fcOutput = np.empty(( args['batch_sz'], args['outsz'], ), dtype=np.float32, order='C') batch_array = np.empty(((args['batch_sz'], ) + args['in_shape']), dtype=np.float32, order='C') labels = xdnn_io.get_labels(args['labels']) if args['golden']: goldenMap = xdnn_io.getGoldenMap(args['golden']) top5Count = 0 top1Count = 0 for i in xrange(0, len(img_paths), args['batch_sz']): pl = [] for j, p in enumerate(img_paths[i:i + args['batch_sz']]): batch_array[j, ...], _ = xdnn_io.loadImageBlobFromFile( p, args['img_raw_scale'], args['img_mean'], args['img_input_scale'], args['in_shape'][2], args['in_shape'][1]) pl.append(p) fpgaRT.execute(batch_array, fpgaOutput) xdnn.computeFC(fcWeight, fcBias, fpgaOutput, args['batch_sz'], args['outsz'], args['fpgaoutsz'], fcOutput) softmaxOut = xdnn.computeSoftmax(fcOutput) xdnn_io.printClassification(softmaxOut, pl, labels) if args['golden']: for j, p in enumerate(img_paths[i:i + args['batch_sz']]): top1Count += xdnn_io.isTopK(softmaxOut[j], goldenMap, p, labels, 1) top5Count += xdnn_io.isTopK(softmaxOut[j], goldenMap, p, labels, 5) xdnn.closeHandle() if args['golden']: print("\nAverage accuracy (n=%d) Top-1: %.1f%%, Top-5: %.1f%%\n") % ( len(img_paths), float(top1Count) / float(len(img_paths)) * 100., float(top5Count) / float(len(img_paths)) * 100.)
def main(): args = xdnn_io.processCommandLine() ret = xdnn.createHandle(args['xclbin'], "kernelSxdnn_0", args['xlnxlib']) if ret != 0: sys.exit(1) (weightsBlob, fcWeight, fcBias) = xdnn_io.loadWeights(args) (fpgaInputs, batch_sz) = xdnn_io.prepareInput(args) fpgaOutput = xdnn_io.prepareOutput(args['fpgaoutsz'], batch_sz) for i in range(1): startTime = timeit.default_timer() xdnn.execute( args['netcfg'], weightsBlob, fpgaInputs, fpgaOutput, batch_sz, # num batches args['quantizecfg'], args['scaleB'], args['PE']) elapsedTime = timeit.default_timer() - startTime print "\nAfter FPGA (%f ms)" % (elapsedTime * 1000) startTime = timeit.default_timer() fcOut = xdnn.computeFC(fcWeight, fcBias, fpgaOutput, batch_sz, args['outsz'], args['fpgaoutsz'], args['useblas']) elapsedTime = timeit.default_timer() - startTime print "\nAfter FC (%f ms)" % (elapsedTime * 1000) #for i in range(10): # print "%f" % fpgaOutput[i], startTime = timeit.default_timer() softmaxOut = xdnn.computeSoftmax(fcOut, batch_sz) elapsedTime = timeit.default_timer() - startTime print "\nAfter Softmax (%f ms)" % (elapsedTime * 1000) #for i in range(10): # print "%f" % fpgaOutput[i], xdnn_io.printClassification(softmaxOut, args) print "\nSuccess!\n" xdnn.closeHandle()
def exec_post_fpga(self, image, streamId): args = copy.deepcopy(self._config) fpgaOutput = self._streamOutputs[streamId] batch_sz = 1 fcOut = np.empty(( batch_sz, args['outsz'], ), dtype=np.float32, order='C_CONTIGUOUS') xdnn.computeFC(self._fcWeight, self._fcBias, self._streamOutputs[streamId], batch_sz, args['outsz'], args['fpgaoutsz'], fcOut) softmaxOut = xdnn.computeSoftmax(fcOut) result = xdnn_io.getClassification(softmaxOut, [image], self._labels) result = result.strip().split("\n") top5 = [x for x in result if "-------" not in x] return top5
def main(): args = xdnn_io.processCommandLine() # processCommandLine() startTime = timeit.default_timer() ret = xdnn.createHandle(args['xclbin'], "kernelSxdnn_0", args['xlnxlib']) # ret = xdnn.createHandle(g_xclbin, "kernelSxdnn_0", g_xdnnLib) if ret != 0: sys.exit(1) elapsedTime = timeit.default_timer() - startTime print "\nAfter createHandle (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() # TODO dict of tuples instead? fpgaInputs = {} fpgaOutputs = {} weightsBlobs = {} fcWeights = {} fcBiases = {} batch_sizes = {} fpgaOutputSizes = {} PEs = {} netFiles = {} confNames = [] for netconf_args in args['jsoncfg']: confName = str(netconf_args['name']) confNames.append(confName) # make a tuple instead PE = [int(x) for x in netconf_args['PE'].split()] # if cuMask in cuMaskList: # raise Exception('cuMasks are non-disjoint') datadir = str(netconf_args['datadir']) fpgaoutsz = int(netconf_args['fpgaoutsz']) netfile = str(netconf_args['netcfg']) PEs[confName] = PE (weightsBlobs[confName], fcWeights[confName], fcBiases[confName]) = xdnn_io.loadWeights(netconf_args) fpgaOutputSizes[confName] = fpgaoutsz (fpgaInputs[confName], batch_sz) = xdnn_io.prepareInput(netconf_args, PE) batch_sizes[confName] = batch_sz fpgaOutputs[confName] = xdnn_io.prepareOutput( int(netconf_args['fpgaoutsz']), batch_sz) netFiles[confName] = netfile elapsedTime = timeit.default_timer() - startTime print "\nAfter init (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() for netconf_args in args['jsoncfg']: confName = str(netconf_args['name']) xdnn.exec_async(netFiles[confName], weightsBlobs[confName], fpgaInputs[confName], fpgaOutputs[confName], int(batch_sizes[confName]), netconf_args['quantizecfg'], netconf_args['scaleB'], PEs[confName]) elapsedTime = timeit.default_timer() - startTime print "\nAfter Execonly (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() for confName in confNames: xdnn.get_result(PEs[confName]) elapsedTime = timeit.default_timer() - startTime print "\nAfter wait (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() for netconf_args in args['jsoncfg']: confName = str(netconf_args['name']) fcOut = xdnn.computeFC(fcWeights[confName], fcBiases[confName], fpgaOutputs[confName], batch_sizes[confName], netconf_args['outsz'], netconf_args['fpgaoutsz'], netconf_args['useblas']) elapsedTime = timeit.default_timer() - startTime print "\nAfter FC (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() softmaxOut = xdnn.computeSoftmax(fcOut, batch_sizes[confName]) elapsedTime = timeit.default_timer() - startTime print "\nAfter Softmax (%f ms):" % (elapsedTime * 1000) xdnn_io.printClassification(softmaxOut, netconf_args) print "\nSuccess!\n" xdnn.closeHandle()
def main(): processCommandLine() ret = xdnn.createManager(g_xdnnLib) if ret != True: sys.exit(1) (fcWeight, fcBias) = xdnn_io.loadFCWeightsBias(g_xdnnTestDataDir) # # Spawn the first 2 stages of our pipeline # Stage 1: Process JPG # Stage 2: Run FPGA "classify" qPrep = Queue(maxsize=1) qFpga = Queue(maxsize=1) prepProc = Process(target=prep_process, args=(qPrep, )) xdnnProc = Process(target=xdnn_process, args=(qPrep, qFpga)) prepProc.start() xdnnProc.start() # # The rest of this function post-processes FPGA output: # 1) Compute the final FC + Softmax layers # 2) Print classification & accuracy # zmqPub = None if g_zmqPub: zmqPub = ZmqResultPublisher() goldenMap = None if g_goldenFile: goldenMap = getGoldenMap(g_goldenFile, g_labelFile) numProcessed = 0 allTop1 = 0 allTop5 = 0 while True: loopTime = timeit.default_timer() (fpgaOutput, inputImageFiles) = qFpga.get() if type(fpgaOutput) == type(None) \ and type(inputImageFiles) == type(None): break startTime = timeit.default_timer() fcOutput = xdnn.computeFC(fcWeight, fcBias, fpgaOutput, g_batchSize, g_outputSize, g_fpgaOutputSize, g_useBlas) elapsedTime = timeit.default_timer() - startTime print "[time] FC (%.2f ms)" % (elapsedTime * 1000) startTime = timeit.default_timer() smaxOutput = xdnn.computeSoftmax(fcOutput, g_batchSize) elapsedTime = timeit.default_timer() - startTime #print "\nAfter Softmax (%.2f ms):" % (elapsedTime * 1000) numProcessed += g_batchSize (top1, top5) = printClassification(smaxOutput.flatten().tolist(), g_outputSize, inputImageFiles, g_labelFile, goldenMap, zmqPub=zmqPub) if goldenMap: print "Accuracy (i=%d) Top-1: %d, Top-5: %d" \ % (numProcessed/g_batchSize, top1, top5) allTop1 += top1 allTop5 += top5 print "Num processed: %d" % numProcessed print "\n[time] Total loop (%.2f ms)" % ( (timeit.default_timer() - loopTime) * 1000) if goldenMap and numProcessed: print "\nAverage accuracy (n=%d) Top-1: %.1f%%, Top-5: %.1f%%\n" \ % (numProcessed, float(allTop1)/float(numProcessed)*100., float(allTop5)/float(numProcessed)*100.) prepProc.join() xdnnProc.join()
def executeOnFPGA(sProtoBufPath, Qmode, Inference_Data, handle, name, num_models): TOTAL_IMAGES = 128 # Create handle for FPGA ret, handle = xdnn.createHandle( "../overlaybins/" + "aws" + "/overlay_1.xclbin", "kernelSxdnn_0") #Initialize objects to store results fpgaRT = {} fpgaOutput = {} fcWeight = {} fcBias = {} netFiles = {} confNames = [] #Generate batch batch_array = generateRandomBatch(TOTAL_IMAGES, None) #Get Image batch to start inference for i in range(0, num_models): confNames += [str(i)] #Generate batch 10 * batchsize config = initializeFpgaModel(sProtoBufPath, Qmode) config["PE"] = i config["name"] = config["name"] + "_" + str(i) # Load weights to FPGA config = TransferWeightsFPGA(len(batch_array), config, handle, i) fpgaRT[str(i)] = xdnn.XDNNFPGAOp(handle, config) (fcWeight[str(i)], fcBias[str(i)]) = xdnn_io.loadFCWeightsBias(config) fpgaOutput[str(i)], fcOutput, config = AllocateMemoryToHost(config) start0 = time.time() # Schedule FPGA execution asynchronously for i in range(0, num_models): fpgaRT[str(i)].exec_async(batch_array, fpgaOutput[str(i)], i) start1 = time.time() #Fetch results of all parallel executions for i in range(0, num_models): #Get FPGA output ret = fpgaRT[str(i)].get_result(i) #Compute Inner product - fully connected layer xdnn.computeFC(fcWeight[str(i)], fcBias[str(i)], fpgaOutput[str(i)], config['batch_sz'], config['outsz'], config['fpgaoutsz'], fcOutput) #Compute output softmax softmaxOut = xdnn.computeSoftmax(fcOutput) #xdnn_io.printClassification(softmaxOut, config['images'], labels); end = time.time() print("throughput", (num_models * len(batch_array) / (end - start0)), "duration", end - start0) Inference_result = [] #Append results Inference_Data.append({ "experiment": str(Qmode) + "_bit_mode", "duration_overall": end - start0, "imgsPerSecAll": num_models * len(batch_array) / (end - start0), "num_models_parallel": num_models }) xdnn.closeHandle() Inference_Data = pd.DataFrame(Inference_Data) # Inference_Data.to_csv('multinet_results.csv') result = pd.read_csv('multinet_results.csv') result = result.append(Inference_Data) result.to_csv('multinet_results.csv')
def img_classify(msg): global g_inputs global g_inputbuf global g_fpgaOutput global g_weightsBlob global g_fcWeight global g_fcBias # message is a rowset, one col, a list of file names. rs = msg.rowset if len(rs.columns) == 0 or rs.columns[0].nrow == 0: print("Img classify request size is 0.\n") return None print("Img classify request size is {0}.\n".format(rs.columns[0].nrow)) # Lock the fpga device. config is protected by this lock as well. fpga_lock.acquire() ret = None for i in range(rs.columns[0].nrow): fname = rs.columns[0].sdata[i] print("Running classification for images: {0}\n".format(fname)) print("Prepare inputs ...\n") # g_batchSize = 1, for now. print "g_inputs", g_inputs g_inputs[0] = xdnn_io.loadImageBlobFromFile(str(fname), g_mean, g_img_h, g_img_w) print("Quantize inputs ...\n") quantizeInputs = xdnn.quantizeInputs(g_firstFpgaLayerName, g_inputs, None, None, g_fpgaCfgFile, g_scaleB) print("Prepare inputs for fpga inputs ...\n") fpgaInputs = xdnn.prepareInputsForFpga(quantizeInputs, g_fpgaCfgFile, g_scaleB, -1, g_firstFpgaLayerName) print("Run FPGA commands ...\n") xdnn.execute(g_netFile, g_weightsBlob, fpgaInputs, g_fpgaOutput, g_batchSize, g_fpgaCfgFile, g_scaleB, g_PE) print("Compute FC ...\n") fcOutput = xdnn.computeFC(g_fcWeight, g_fcBias, g_fpgaOutput, g_batchSize, g_outputSize, g_fpgaOutputSize, g_useBlas) print("Softmax ...\n") softmaxOut = xdnn.computeSoftmax(fcOutput, g_batchSize) ret = get_classification(softmaxOut, fname) fpga_lock.release() # Now construct return msg if ret == None: print("Return None: ???\n") return None retmsg = xdrive_pb2.XMsg() rs = retmsg.rowset # return 4 columns, (filename, ordinal, score, class) col1 = rs.columns.add() col2 = rs.columns.add() col3 = rs.columns.add() col4 = rs.columns.add() col1.nrow = len(ret) col2.nrow = len(ret) col3.nrow = len(ret) col4.nrow = len(ret) for i in range(len(ret)): (a, b, c, d) = ret[i] # print("Return {0}, {1}, {2}, {3}.\n".format(a, b, c, d)) col1.nullmap.append(False) col1.sdata.append(a) col2.nullmap.append(False) col2.i32data.append(b) col3.nullmap.append(False) col3.f64data.append(c) col4.nullmap.append(False) col4.sdata.append(d) return retmsg
def img_classify(msg): global g_args global g_ctxt # message is a rowset, one col, a list of file names. rs = msg.rowset if len(rs.columns) == 0 or rs.columns[0].nrow == 0: print("Img classify request size is 0.\n") return None print("Img classify request size is {0}.\n".format(rs.columns[0].nrow)) # Lock the fpga device. config is protected by this lock as well. fpga_lock.acquire() ret = [] if is_deploymode(): firstInput = g_ctxt['fpgaInput'].itervalues().next() firstOutput = g_ctxt['fpgaOutput'].itervalues().next() for i in xrange(0, rs.columns[0].nrow, g_args['batch_sz']): pl = [] for j in range(g_args['batch_sz']): fname = str(rs.columns[0].sdata[i + j]) print("Running classification for {0}-th images: {1}\n".format( i + j, fname)) if is_deploymode(): firstInput[j, ...], _ = xdnn_io.loadImageBlobFromFile( fname, g_args['img_raw_scale'], g_args['img_mean'], g_args['img_input_scale'], g_ctxt['inShape'][2], g_ctxt['inShape'][3]) else: g_ctxt['batch_array'][j, ...], _ = xdnn_io.loadImageBlobFromFile( fname, g_args['img_raw_scale'], g_args['img_mean'], g_args['img_input_scale'], g_ctxt['in_shape'][2], g_ctxt['in_shape'][1]) pl.append(fname) if is_deploymode(): g_ctxt['fpgaRT'].execute(g_ctxt['fpgaInput'], g_ctxt['fpgaOutput']) xdnn.computeFC(g_ctxt['fcWeight'], g_ctxt['fcBias'], firstOutput, g_ctxt['fcOutput']) else: g_ctxt['fpgaRT'].execute(g_ctxt['batch_array'], g_ctxt['fpgaOutput']) xdnn.computeFC(g_ctxt['fcWeight'], g_ctxt['fcBias'], g_ctxt['fpgaOutput'], g_args['batch_sz'], g_args['outsz'], g_args['fpgaoutsz'], g_ctxt['fcOutput']) softmaxOut = xdnn.computeSoftmax(g_ctxt['fcOutput']) ret = ret + get_classification(softmaxOut, pl, g_ctxt['labels']) fpga_lock.release() retmsg = xdrive_pb2.XMsg() rs = retmsg.rowset # return 4 columns, (filename, ordinal, score, class) col1 = rs.columns.add() col2 = rs.columns.add() col3 = rs.columns.add() col4 = rs.columns.add() col1.nrow = len(ret) col2.nrow = len(ret) col3.nrow = len(ret) col4.nrow = len(ret) for i in range(len(ret)): # print("Return {0}, {1}, {2}, {3}.\n".format(a, b, c, d)) col1.nullmap.append(False) col1.sdata.append(ret[i][0]) col2.nullmap.append(False) col2.i32data.append(ret[i][1]) col3.nullmap.append(False) col3.f64data.append(ret[i][2]) col4.nullmap.append(False) col4.sdata.append(ret[i][3]) return retmsg
def main(argv=None): args = xdnn_io.processCommandLine(argv) startTime = timeit.default_timer() ret = xdnn.createHandle(args['xclbin'], "kernelSxdnn_0", args['xlnxlib']) if ret != 0: sys.exit(1) elapsedTime = timeit.default_timer() - startTime print "\nTime to createHandle (%f ms):" % (elapsedTime * 1000) # we do not need other args keys except 'jsoncfg' args = args['jsoncfg'] netCfgs = defaultdict(dict) confNames = [] startTime = timeit.default_timer() for streamId, netCfg_args in enumerate(args): confName = str(netCfg_args['name']) confNames += [confName] netCfg_args['netcfg'] = './data/{}_{}.cmd'.format( netCfg_args['net'], netCfg_args['dsp']) netCfgs[confName]['streamId'] = streamId netCfgs[confName]['args'] = netCfg_args (netCfgs[confName]['weightsBlobs'], netCfgs[confName]['fcWeights'], netCfgs[confName]['fcBiases']) = xdnn_io.loadWeights(netCfg_args) netCfgs[confName]['batch_sz'] = 1 netCfgs[confName]['fpgaOutputs'] = xdnn_io.prepareOutput( netCfg_args["fpgaoutsz"], netCfgs[confName]['batch_sz']) elapsedTime = timeit.default_timer() - startTime print "\nTime to init (%f ms):" % (elapsedTime * 1000) ## run YOLO confName = 'yolo' netCfg = netCfgs[confName] startTime = timeit.default_timer() (netCfg['fpgaInputs'], netCfg['batch_sz'], netCfg['shapes']) = xdnn_io.prepareInput(netCfg['args'], netCfg['args']['PE']) elapsedTime = timeit.default_timer() - startTime print "\nTime to transfer input image to FPGA (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() xdnn.exec_async(netCfg['args']['netcfg'], netCfg['weightsBlobs'], netCfg['fpgaInputs'], netCfg['fpgaOutputs'], netCfg['batch_sz'], netCfg['args']['quantizecfg'], netCfg['args']['scaleB'], netCfg['args']['PE'], netCfg['streamId']) elapsedTime = timeit.default_timer() - startTime print "\nTime to execute Yolo on FPGA (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() xdnn.get_result(netCfg['args']['PE'], netCfg['streamId']) elapsedTime = timeit.default_timer() - startTime print "\nTime to retrieve yolo outputs from FPGA (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() out_h = \ out_w = netCfg['args']['in_shape'][1] / 32 anchor_boxes = 5 objectness = 1 coordinates = 4 classes = 80 out_c = objectness + coordinates + classes # Reshape the fpgaOutputs into a 4D volume yolo_outputs = netCfg['fpgaOutputs'].reshape(anchor_boxes, out_c, out_h, out_w) # Apply sigmoid to 1st, 2nd, 4th channel for all anchor boxes yolo_outputs[:, 0:2, :, :] = sigmoid( yolo_outputs[:, 0:2, :, :]) # (X,Y) Predictions yolo_outputs[:, 4, :, :] = sigmoid( yolo_outputs[:, 4, :, :]) # Objectness / Box Confidence # Apply softmax on the class scores foreach anchor box for box in range(anchor_boxes): yolo_outputs[box, 5:, :, :] = softmax(yolo_outputs[box, 5:, :, :]) # Perform Non-Max Suppression # Non-Max Suppression filters out detections with a score lesser than 0.24 # Additionally if there are two predections with an overlap > 30%, the prediction with the lower score will be filtered scorethresh = 0.24 iouthresh = 0.3 bboxes = nms.do_baseline_nms(yolo_outputs.flat, netCfg['shapes'][0][1], netCfg['shapes'][0][0], netCfg['args']['in_shape'][2], netCfg['args']['in_shape'][1], out_w, out_h, anchor_boxes, classes, scorethresh, iouthresh) with open(netCfg['args']['labels']) as f: namez = f.readlines() names = [x.strip() for x in namez] # Lets print the detections our model made for j in range(len(bboxes)): print("Obj %d: %s" % (j, names[bboxes[j]['classid']])) print("\t score = %f" % (bboxes[j]['prob'])) print("\t (xlo,ylo) = (%d,%d)" % (bboxes[j]['ll']['x'], bboxes[j]['ll']['y'])) print("\t (xhi,yhi) = (%d,%d)" % (bboxes[j]['ur']['x'], bboxes[j]['ur']['y'])) elapsedTime = timeit.default_timer() - startTime print "\nTime to execute on CPU (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() img = cv2.imread(netCfg['args']['images'][0]) #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # YOLO was trained with RGB, not BGR like Caffe # choose one of the bounding boxes obj_idx = 0 # specify a margin added to the selected bounding box margin = 10 H_slice = slice(max(0, bboxes[obj_idx]['ur']['y'] - margin), min(img.shape[0], bboxes[obj_idx]['ll']['y'] + margin)) W_slice = slice(max(0, bboxes[obj_idx]['ll']['x'] - margin), min(img.shape[1], bboxes[obj_idx]['ur']['x'] + margin)) img = img[H_slice, W_slice, :] print('pass obj {}: {} with size {} to googlenet'.format( obj_idx, names[bboxes[obj_idx]['classid']], img.shape)) cv2.imwrite('cropped_yolo_output.jpg', img) ''' if img.shape[-1] == 1 or img.shape[-1] == 3: # [H, W, C] old_dims = np.array(img.shape[:2], dtype=float) else: # [C, H, W] old_dims = np.array(img.shape[1:], dtype=float) ''' ## run GOOGLENET confName = 'googlenet' netCfg = netCfgs[confName] ''' new_dims = netCfg['args']['in_shape'] if new_dims[-1] == 1 or new_dims[-1] == 3: # [H, W, C] new_dims = np.array(new_dims[:2], dtype=int) else: # [C, H, W] new_dims = np.array(new_dims[1:], dtype=int) scale_dims = new_dims.copy() min_scale_idx = np.argmin(old_dims/new_dims) if min_scale_idx == 0: scale_dims[1] = scale_dims[0] * old_dims[1] / old_dims[0] else: scale_dims[0] = scale_dims[1] * old_dims[0] / old_dims[1] scale_dims = scale_dims.astype(int) # transform input image to match googlenet # scale the image print('scale image to {}'.format(scale_dims)) img = resize_image(img, list(scale_dims)) cv2.imwrite('rescaled_scaled.jpg', img) # crop the image crop_idxs = [np.arange(new_dims[i]) + int((scale_dims[i]-new_dims[i])/2) for i in range(2)] if img.shape[-1] == 1 or img.shape[-1] == 3: # [H, W, C] img = img[crop_idxs[0].reshape(-1,1), crop_idxs[1], :] else: # [C, H, W] img = img[:, crop_idxs[0].reshape(-1,1), crop_idxs[1]] print('crop image to {}'.format(img.shape)) cv2.imwrite('rescaled_cropped.jpg', img) #img = np.transpose(img, (2, 0, 1)) #cv2.imwrite('rescaled_transposed.jpg', img) ''' netCfg['args']['images'] = [img] elapsedTime = timeit.default_timer() - startTime print "\nTime to prepare googlenet image on CPU (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() (netCfg['fpgaInputs'], netCfg['batch_sz'], netCfg['shapes']) = xdnn_io.prepareInput(netCfg['args'], netCfg['args']['PE']) elapsedTime = timeit.default_timer() - startTime print "\nTime to transfer input image to FPGA (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() xdnn.exec_async(netCfg['args']['netcfg'], netCfg['weightsBlobs'], netCfg['fpgaInputs'], netCfg['fpgaOutputs'], netCfg['batch_sz'], netCfg['args']['quantizecfg'], netCfg['args']['scaleB'], netCfg['args']['PE'], netCfg['streamId']) elapsedTime = timeit.default_timer() - startTime print "\nTime to execute googlenet on FPGA (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() xdnn.get_result(netCfg['args']['PE'], netCfg['streamId']) elapsedTime = timeit.default_timer() - startTime print "\nTime to retrieve googlenet outputs from FPGA (%f ms):" % ( elapsedTime * 1000) startTime = timeit.default_timer() fcOut = np.empty((netCfg['batch_sz'] * netCfg['args']['outsz']), dtype=np.float32, order='C') xdnn.computeFC(netCfg['fcWeights'], netCfg['fcBiases'], netCfg['fpgaOutputs'], netCfg['batch_sz'], netCfg['args']['outsz'], netCfg['args']['fpgaoutsz'], fcOut) elapsedTime = timeit.default_timer() - startTime print "\nTime to run FC layers on CPU (%f ms):" % (elapsedTime * 1000) startTime = timeit.default_timer() softmaxOut = xdnn.computeSoftmax(fcOut, netCfg['batch_sz']) elapsedTime = timeit.default_timer() - startTime print "\nTime to run Softmax on CPU (%f ms):" % (elapsedTime * 1000) xdnn_io.printClassification(softmaxOut, netCfg['args']) print "\nSuccess!\n" xdnn.closeHandle()
def softmax(fcOutput, g_batchSize): return xdnn.computeSoftmax(fcOutput, g_batchSize)