def beginjob(self, evt, env): """The beginjob() function does one-time initialisation from event- or environment data. It is called at an XTC configure transition. @param evt Event data object, a configure object @param env Environment object """ super(common_mode_correction, self).beginjob(evt, env) # Load the dark image and ensure it is signed and at least 32 bits # wide, since it will be used for differencing. If a dark image # is provided, a standard deviation image is required, and all the # ADU scales must match up. # # XXX Can we zap all the ADU_SCALE stuff? # # XXX Do we really need to store the substituted values in the # instance here? At least self._dark_path is referenced later on. # # Note that this will load the dark, standard deviation and gain # once (SEVERAL TIMES) for each process, but the gain is that we # can do substitutions. But it is only done at the beginning of # the job. self.dark_img = None if self._dark_path is not None: self._dark_path = cspad_tbx.getOptEvalOrString( cspad_tbx.pathsubst(self._dark_path, evt, env)) assert self._dark_stddev_path is not None dark_dict = easy_pickle.load(self._dark_path) #assert "ADU_SCALE" not in dark_dict # force use of recalculated dark self.dark_img = dark_dict['DATA'] assert isinstance(self.dark_img, flex.double) self._dark_stddev_path = cspad_tbx.getOptEvalOrString( cspad_tbx.pathsubst(self._dark_stddev_path, evt, env)) self.dark_stddev = easy_pickle.load(self._dark_stddev_path)['DATA'] assert isinstance(self.dark_stddev, flex.double) self.dark_mask = (self.dark_stddev > 0) # Load the mask image and ensure it is signed and at least 32 bits # wide, since it will be used for differencing. self.gain_map = None if self._gain_map_path is not None: self._gain_map_path = cspad_tbx.getOptEvalOrString( cspad_tbx.pathsubst(self._gain_map_path, evt, env)) self.gain_map = easy_pickle.load(self._gain_map_path)['DATA'] if self.gain_map_level is not None: sel = flex.bool([bool(f) for f in self.gain_map]) sel.reshape(flex.grid(self.gain_map.focus())) self.gain_map = self.gain_map.set_selected(~sel, self.gain_map_level) self.gain_map = self.gain_map.set_selected(sel, 1) assert isinstance(self.gain_map, flex.double) self.mask_img = None if self._mask_path is not None: self._mask_path = cspad_tbx.getOptEvalOrString( cspad_tbx.pathsubst(self._mask_path, evt, env)) self.mask_img = easy_pickle.load(self._mask_path)['DATA'] assert isinstance(self.mask_img, flex.double) \ or isinstance(self.mask_img, flex.int) if self.address == 'XppGon-0|marccd-0': #mod_mar.py will set these during its event function self.active_areas = None self.beam_center = None elif self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0': assert self.override_beam_x is not None assert self.override_beam_y is not None from xfel.cxi.cspad_ana import rayonix_tbx maxx, maxy = rayonix_tbx.get_rayonix_detector_dimensions(self.bin_size) if self.crop_rayonix: bx = int(round(self.override_beam_x)) by = int(round(self.override_beam_y)) minsize = min([bx,by,maxx-bx,maxy-by]) self.beam_center = minsize,minsize self.active_areas = flex.int([0,0,2*minsize,2*minsize]) self.rayonix_crop_slice = slice(by-minsize,by+minsize), slice(bx-minsize,bx+minsize) else: self.beam_center = self.override_beam_x,self.override_beam_y self.active_areas = flex.int([0,0,maxx,maxy]) elif self.address == 'XppGon-0|Cspad-0': evt_time = cspad_tbx.evt_time(evt) # tuple of seconds, milliseconds timestamp = cspad_tbx.evt_timestamp(evt_time) # human readable format from iotbx.detectors.cspad_detector_formats import detector_format_version, reverse_timestamp from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas version_lookup = detector_format_version(self.address, reverse_timestamp(timestamp)[0]) assert version_lookup is not None self.active_areas = xpp_active_areas[version_lookup]['active_areas'] self.beam_center = [1765 // 2, 1765 // 2] else: (self.beam_center, self.active_areas) = cspad_tbx.cbcaa( cspad_tbx.getConfig(self.address, env), self.sections)
def event(self, evt, env): """The event() function is called for every L1Accept transition. @param evt Event data object, a configure object @param env Environment object """ super(common_mode_correction, self).event(evt, env) if (evt.get("skip_event")): return if not hasattr(self, 'active_areas') or self.active_areas is None or \ not hasattr(self, 'beam_center') or self.beam_center is None: if self.address == 'XppGon-0|marccd-0': # The mod_mar module needs to have been called before this one # to set this up. The MAR does not have a configure object. self.beam_center = evt.get("marccd_beam_center") self.active_areas = evt.get("marccd_active_areas") elif self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0': pass # bc and aa set in the beginjob function elif self.address == 'XppGon-0|Cspad-0': # Load the active areas as determined from the optical metrology from iotbx.detectors.cspad_detector_formats import detector_format_version, reverse_timestamp from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas version_lookup = detector_format_version(self.address, reverse_timestamp(self.timestamp)[0]) assert version_lookup is not None self.active_areas = xpp_active_areas[version_lookup]['active_areas'] self.beam_center = [1765 // 2, 1765 // 2] else: (self.beam_center, self.active_areas) = \ cspad_tbx.cbcaa(cspad_tbx.getConfig(self.address, env), self.sections) if self.filter_laser_1_status is not None: if (self.laser_1_status.status != self.filter_laser_1_status or (self.laser_1_ms_since_change is not None and self.laser_1_ms_since_change < self.filter_laser_wait_time)): evt.put(skip_event_flag(), "skip_event") return if self.filter_laser_4_status is not None: if (self.laser_4_status.status != self.filter_laser_4_status or (self.laser_4_ms_since_change is not None and self.laser_4_ms_since_change < self.filter_laser_wait_time)): evt.put(skip_event_flag(), "skip_event") return # Early return if the full detector image is already stored in the # event. Otherwise, get it from the stream as a double-precision # floating-point flex array. XXX It is probably not safe to key # the image on self.address, so we should come up with our own # namespace. XXX Misnomer--could be CAMP, too self.cspad_img = evt.get(self.address) if self.cspad_img is not None: return if self.address == 'XppGon-0|Cspad-0': # Kludge until cspad_tbx.image() can be rewritten to handle the # XPP metrology. self.cspad_img = cspad_tbx.image_xpp( self.address, evt, env, self.active_areas) elif self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0': from psana import Source, Camera import numpy as np address = cspad_tbx.old_address_to_new_address(self.address) src=Source('DetInfo(%s)'%address) self.cspad_img = evt.get(Camera.FrameV1,src) if self.cspad_img is not None: self.cspad_img = self.cspad_img.data16().astype(np.float64) elif self.address=='CxiDg3-0|Opal1000-0': if evt.getFrameValue(self.address) is not None: self.cspad_img = evt.getFrameValue(self.address).data() elif self.address=='CxiEndstation-0|Opal1000-2': if evt.getFrameValue(self.address) is not None: self.cspad_img = evt.getFrameValue(self.address).data() elif self.address=='FeeHxSpectrometer-0|Opal1000-1': if evt.getFrameValue(self.address) is not None: self.cspad_img = evt.getFrameValue(self.address).data() elif self.address=='NoDetector-0|Cspad2x2-0': import numpy as np from pypdsdata import xtc test=[] self.cspad_img = evt.get(xtc.TypeId.Type.Id_Cspad2x2Element,self.address).data() self.cspad_img=np.reshape(self.cspad_img,(370, 388)) else: try: self.cspad_img = cspad_tbx.image( self.address, cspad_tbx.getConfig(self.address, env), evt, env, self.sections) except Exception, e: self.logger.error("Error reading image data: " + str(e)) evt.put(skip_event_flag(), "skip_event") return
def event(self, evt, env): """The event() function is called for every L1Accept transition. @param evt Event data object, a configure object @param env Environment object """ super(common_mode_correction, self).event(evt, env) if (evt.get("skip_event")): return if not hasattr(self, 'active_areas') or self.active_areas is None or \ not hasattr(self, 'beam_center') or self.beam_center is None: if self.address == 'XppGon-0|marccd-0': # The mod_mar module needs to have been called before this one # to set this up. The MAR does not have a configure object. self.beam_center = evt.get("marccd_beam_center") self.active_areas = evt.get("marccd_active_areas") elif self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0': pass # bc and aa set in the beginjob function elif self.address == 'XppGon-0|Cspad-0': # Load the active areas as determined from the optical metrology from iotbx.detectors.cspad_detector_formats import detector_format_version, reverse_timestamp from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas version_lookup = detector_format_version( self.address, reverse_timestamp(self.timestamp)[0]) assert version_lookup is not None self.active_areas = xpp_active_areas[version_lookup][ 'active_areas'] self.beam_center = [1765 // 2, 1765 // 2] else: (self.beam_center, self.active_areas) = \ cspad_tbx.cbcaa(cspad_tbx.getConfig(self.address, env), self.sections) if self.filter_laser_1_status is not None: if (self.laser_1_status.status != self.filter_laser_1_status or (self.laser_1_ms_since_change is not None and self.laser_1_ms_since_change < self.filter_laser_wait_time)): evt.put(skip_event_flag(), "skip_event") return if self.filter_laser_4_status is not None: if (self.laser_4_status.status != self.filter_laser_4_status or (self.laser_4_ms_since_change is not None and self.laser_4_ms_since_change < self.filter_laser_wait_time)): evt.put(skip_event_flag(), "skip_event") return # Early return if the full detector image is already stored in the # event. Otherwise, get it from the stream as a double-precision # floating-point flex array. XXX It is probably not safe to key # the image on self.address, so we should come up with our own # namespace. XXX Misnomer--could be CAMP, too self.cspad_img = evt.get(self.address) if self.cspad_img is not None: return if self.address == 'XppGon-0|Cspad-0': # Kludge until cspad_tbx.image() can be rewritten to handle the # XPP metrology. self.cspad_img = cspad_tbx.image_xpp(self.address, evt, env, self.active_areas) elif self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0': from psana import Source, Camera import numpy as np address = cspad_tbx.old_address_to_new_address(self.address) src = Source('DetInfo(%s)' % address) self.cspad_img = evt.get(Camera.FrameV1, src) if self.cspad_img is not None: self.cspad_img = self.cspad_img.data16().astype(np.float64) elif self.address == 'CxiDg3-0|Opal1000-0': if evt.getFrameValue(self.address) is not None: self.cspad_img = evt.getFrameValue(self.address).data() elif self.address == 'CxiEndstation-0|Opal1000-2': if evt.getFrameValue(self.address) is not None: self.cspad_img = evt.getFrameValue(self.address).data() elif self.address == 'FeeHxSpectrometer-0|Opal1000-1': if evt.getFrameValue(self.address) is not None: self.cspad_img = evt.getFrameValue(self.address).data() elif self.address == 'NoDetector-0|Cspad2x2-0': import numpy as np from pypdsdata import xtc test = [] self.cspad_img = evt.get(xtc.TypeId.Type.Id_Cspad2x2Element, self.address).data() self.cspad_img = np.reshape(self.cspad_img, (370, 388)) else: try: self.cspad_img = cspad_tbx.image( self.address, cspad_tbx.getConfig(self.address, env), evt, env, self.sections) except Exception as e: self.logger.error("Error reading image data: " + str(e)) evt.put(skip_event_flag(), "skip_event") return if self.cspad_img is None: if cspad_tbx.address_split(self.address)[2] != 'Andor': self.nfail += 1 self.logger.warning("event(): no image, shot skipped") evt.put(skip_event_flag(), "skip_event") return self.cspad_img = flex.double(self.cspad_img.astype(numpy.float64)) # If a dark image was provided, subtract it from the image. There # is no point in doing common-mode correction unless the dark # image was subtracted. if (self.dark_img is not None): self.cspad_img -= self.dark_img if (self.common_mode_correction != "none"): # Mask out inactive pixels prior to common mode correction. # Pixels are marked as inactive either due to low ADU values # or non-positive standard deviations in dark image. XXX Make # the threshold tunable? cspad_mask = self.dark_mask.deep_copy() if self.roi is not None and self.common_mode_correction == "chebyshev": roi_mask = cspad_mask[self.roi[2]:self.roi[3], :] roi_mask = flex.bool(roi_mask.accessor(), False) cspad_mask.matrix_paste_block_in_place(block=roi_mask, i_row=self.roi[2], i_column=0) # Extract each active section from the assembled detector # image and apply the common mode correction. XXX Make up a # quadrant mask for the emission detector. Needs to be # checked! config = cspad_tbx.getConfig(self.address, env) if len(self.sections) == 1: q_mask = 1 else: q_mask = config.quadMask() for q in range(len(self.sections)): if (not ((1 << q) & q_mask)): continue # XXX Make up section mask for the emission detector. Needs # to be checked! import _pdsdata if len(self.sections) == 1 and type(config) in ( _pdsdata.cspad2x2.ConfigV1, _pdsdata.cspad2x2.ConfigV2): s_mask = config.roiMask() else: s_mask = config.roiMask(q) for s in range(len(self.sections[q])): # XXX DAQ misconfiguration? This mask appears not to work # reliably for the Sc1 detector. # if (not((1 << s) & s_mask)): # continue corners = self.sections[q][s].corners() i_row = int(round(min(c[0] for c in corners))) i_column = int(round(min(c[1] for c in corners))) n_rows = int(round(max(c[0] for c in corners))) - i_row n_columns = int(round(max( c[1] for c in corners))) - i_column section_img = self.cspad_img.matrix_copy_block( i_row=i_row, i_column=i_column, n_rows=n_rows, n_columns=n_columns) section_mask = cspad_mask.matrix_copy_block( i_row=i_row, i_column=i_column, n_rows=n_rows, n_columns=n_columns) section_stddev = self.dark_stddev.matrix_copy_block( i_row=i_row, i_column=i_column, n_rows=n_rows, n_columns=n_columns) if section_mask.count(True) == 0: continue if self.common_mode_correction == "chebyshev": assert len(self.sections[q]) == 2 if s == 0: section_imgs = [section_img] section_masks = [section_mask] i_rows = [i_row] i_columns = [i_column] continue else: section_imgs.append(section_img) section_masks.append(section_mask) i_rows.append(i_row) i_columns.append(i_column) chebyshev_corrected_imgs = self.chebyshev_common_mode( section_imgs, section_masks) for i in range(2): section_imgs[i].as_1d().copy_selected( section_masks[i].as_1d().iselection(), chebyshev_corrected_imgs[i].as_1d()) self.cspad_img.matrix_paste_block_in_place( block=section_imgs[i], i_row=i_rows[i], i_column=i_columns[i]) else: common_mode = self.common_mode( section_img, section_stddev, section_mask) self.sum_common_mode += common_mode self.sumsq_common_mode += common_mode**2 # Apply the common mode correction to the # section, and paste it back into the image. self.cspad_img.matrix_paste_block_in_place( block=section_img - common_mode, i_row=i_row, i_column=i_column) if self.gain_map is not None: self.cspad_img *= self.gain_map if (self.mask_img is not None): sel = (self.mask_img == -2) | (self.mask_img == cspad_tbx.cspad_mask_value) self.cspad_img.set_selected(sel, cspad_tbx.cspad_mask_value) if (self.address == 'XppEndstation-0|Rayonix-0' or \ self.address == 'MfxEndstation-0|Rayonix-0') and \ self.crop_rayonix: # Crop the masked data so that the beam center is in the center of the image self.cspad_img = self.cspad_img[self.rayonix_crop_slice[0], self.rayonix_crop_slice[1]] if self.cache_image: # Store the image in the event. evt.put(self.cspad_img, self.address)
def average(argv=None): if argv == None: argv = sys.argv[1:] try: from mpi4py import MPI except ImportError: raise Sorry("MPI not found") command_line = (libtbx.option_parser.option_parser(usage=""" %s [-p] -c config -x experiment -a address -r run -d detz_offset [-o outputdir] [-A averagepath] [-S stddevpath] [-M maxpath] [-n numevents] [-s skipnevents] [-v] [-m] [-b bin_size] [-X override_beam_x] [-Y override_beam_y] [-D xtc_dir] [-f] [-g gain_mask_value] [--min] [--minpath minpath] To write image pickles use -p, otherwise the program writes CSPAD CBFs. Writing CBFs requires the geometry to be already deployed. Examples: cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 Use one process on the current node to process all the events from run 25 of experiment cxi49812, using a detz_offset of 571. mpirun -n 16 cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 As above, using 16 cores on the current node. bsub -a mympi -n 100 -o average.out -q psanaq cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 -o cxi49812 As above, using the psanaq and 100 cores, putting the log in average.out and the output images in the folder cxi49812. """ % libtbx.env.dispatcher_name).option( None, "--as_pickle", "-p", action="store_true", default=False, dest="as_pickle", help="Write results as image pickle files instead of cbf files" ).option( None, "--raw_data", "-R", action="store_true", default=False, dest="raw_data", help= "Disable psana corrections such as dark pedestal subtraction or common mode (cbf only)" ).option( None, "--background_pickle", "-B", default=None, dest="background_pickle", help="" ).option( None, "--config", "-c", type="string", default=None, dest="config", metavar="PATH", help="psana config file" ).option( None, "--experiment", "-x", type="string", default=None, dest="experiment", help="experiment name (eg cxi84914)" ).option( None, "--run", "-r", type="int", default=None, dest="run", help="run number" ).option( None, "--address", "-a", type="string", default="CxiDs2.0:Cspad.0", dest="address", help="detector address name (eg CxiDs2.0:Cspad.0)" ).option( None, "--detz_offset", "-d", type="float", default=None, dest="detz_offset", help= "offset (in mm) from sample interaction region to back of CSPAD detector rail (CXI), or detector distance (XPP)" ).option( None, "--outputdir", "-o", type="string", default=".", dest="outputdir", metavar="PATH", help="Optional path to output directory for output files" ).option( None, "--averagebase", "-A", type="string", default="{experiment!l}_avg-r{run:04d}", dest="averagepath", metavar="PATH", help= "Path to output average image without extension. String substitution allowed" ).option( None, "--stddevbase", "-S", type="string", default="{experiment!l}_stddev-r{run:04d}", dest="stddevpath", metavar="PATH", help= "Path to output standard deviation image without extension. String substitution allowed" ).option( None, "--maxbase", "-M", type="string", default="{experiment!l}_max-r{run:04d}", dest="maxpath", metavar="PATH", help= "Path to output maximum projection image without extension. String substitution allowed" ).option( None, "--numevents", "-n", type="int", default=None, dest="numevents", help="Maximum number of events to process. Default: all" ).option( None, "--skipevents", "-s", type="int", default=0, dest="skipevents", help="Number of events in the beginning of the run to skip. Default: 0" ).option( None, "--verbose", "-v", action="store_true", default=False, dest="verbose", help="Print more information about progress" ).option( None, "--pickle-optical-metrology", "-m", action="store_true", default=False, dest="pickle_optical_metrology", help= "If writing pickle files, use the optical metrology in the experiment's calib directory" ).option( None, "--bin_size", "-b", type="int", default=None, dest="bin_size", help="Rayonix detector bin size" ).option( None, "--override_beam_x", "-X", type="float", default=None, dest="override_beam_x", help="Rayonix detector beam center x coordinate" ).option( None, "--override_beam_y", "-Y", type="float", default=None, dest="override_beam_y", help="Rayonix detector beam center y coordinate" ).option( None, "--calib_dir", "-C", type="string", default=None, dest="calib_dir", metavar="PATH", help="calibration directory" ).option( None, "--pickle_calib_dir", "-P", type="string", default=None, dest="pickle_calib_dir", metavar="PATH", help= "pickle calibration directory specification. Replaces --calib_dir functionality." ).option( None, "--xtc_dir", "-D", type="string", default=None, dest="xtc_dir", metavar="PATH", help="xtc stream directory" ).option( None, "--use_ffb", "-f", action="store_true", default=False, dest="use_ffb", help= "Use the fast feedback filesystem at LCLS. Only for the active experiment!" ).option( None, "--gain_mask_value", "-g", type="float", default=None, dest="gain_mask_value", help= "Ratio between low and high gain pixels, if CSPAD in mixed-gain mode. Only used in CBF averaging mode." ).option( None, "--min", None, action="store_true", default=False, dest="do_minimum_projection", help="Output a minimum projection" ).option( None, "--minpath", None, type="string", default="{experiment!l}_min-r{run:04d}", dest="minpath", metavar="PATH", help= "Path to output minimum image without extension. String substitution allowed" )).process(args=argv) if len(command_line.args) > 0 or \ command_line.options.as_pickle is None or \ command_line.options.experiment is None or \ command_line.options.run is None or \ command_line.options.address is None or \ command_line.options.detz_offset is None or \ command_line.options.averagepath is None or \ command_line.options.stddevpath is None or \ command_line.options.maxpath is None or \ command_line.options.pickle_optical_metrology is None: command_line.parser.show_help() return # set this to sys.maxint to analyze all events if command_line.options.numevents is None: maxevents = sys.maxsize else: maxevents = command_line.options.numevents comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() if command_line.options.config is not None: psana.setConfigFile(command_line.options.config) dataset_name = "exp=%s:run=%d:smd" % (command_line.options.experiment, command_line.options.run) if command_line.options.xtc_dir is not None: if command_line.options.use_ffb: raise Sorry("Cannot specify the xtc_dir and use SLAC's ffb system") dataset_name += ":dir=%s" % command_line.options.xtc_dir elif command_line.options.use_ffb: # as ffb is only at SLAC, ok to hardcode /reg/d here dataset_name += ":dir=/reg/d/ffb/%s/%s/xtc" % ( command_line.options.experiment[0:3], command_line.options.experiment) if command_line.options.calib_dir is not None: psana.setOption('psana.calib-dir', command_line.options.calib_dir) ds = psana.DataSource(dataset_name) address = command_line.options.address src = psana.Source('DetInfo(%s)' % address) nevent = np.array([0.]) if command_line.options.background_pickle is not None: background = easy_pickle.load( command_line.options.background_pickle)['DATA'].as_numpy_array() for run in ds.runs(): runnumber = run.run() if not command_line.options.as_pickle: psana_det = psana.Detector(address, ds.env()) # list of all events if command_line.options.skipevents > 0: print("Skipping first %d events" % command_line.options.skipevents) elif "Rayonix" in command_line.options.address: print("Skipping first image in the Rayonix detector" ) # Shuttering issue command_line.options.skipevents = 1 for i, evt in enumerate(run.events()): if i % size != rank: continue if i < command_line.options.skipevents: continue if i >= maxevents: break if i % 10 == 0: print('Rank', rank, 'processing event', i) #print "Event #",rank*mylength+i," has id:",evt.get(EventId) if 'Rayonix' in command_line.options.address or 'FeeHxSpectrometer' in command_line.options.address or 'XrayTransportDiagnostic' in command_line.options.address: data = evt.get(psana.Camera.FrameV1, src) if data is None: print("No data") continue data = data.data16().astype(np.float64) elif command_line.options.as_pickle: data = evt.get(psana.ndarray_float64_3, src, 'image0') else: # get numpy array, 32x185x388 from xfel.cftbx.detector.cspad_cbf_tbx import get_psana_corrected_data if command_line.options.raw_data: data = get_psana_corrected_data(psana_det, evt, use_default=False, dark=False, common_mode=None, apply_gain_mask=False, per_pixel_gain=False) else: if command_line.options.gain_mask_value is None: data = get_psana_corrected_data(psana_det, evt, use_default=True) else: data = get_psana_corrected_data( psana_det, evt, use_default=False, dark=True, common_mode=None, apply_gain_mask=True, gain_mask_value=command_line.options. gain_mask_value, per_pixel_gain=False) if data is None: print("No data") continue if command_line.options.background_pickle is not None: data -= background if 'FeeHxSpectrometer' in command_line.options.address or 'XrayTransportDiagnostic' in command_line.options.address: distance = np.array([0.0]) wavelength = np.array([1.0]) else: d = cspad_tbx.env_distance(address, run.env(), command_line.options.detz_offset) if d is None: print("No distance, using distance", command_line.options.detz_offset) assert command_line.options.detz_offset is not None if 'distance' not in locals(): distance = np.array([command_line.options.detz_offset]) else: distance += command_line.options.detz_offset else: if 'distance' in locals(): distance += d else: distance = np.array([float(d)]) w = cspad_tbx.evt_wavelength(evt) if w is None: print("No wavelength") if 'wavelength' not in locals(): wavelength = np.array([1.0]) else: if 'wavelength' in locals(): wavelength += w else: wavelength = np.array([w]) t = cspad_tbx.evt_time(evt) if t is None: print("No timestamp, skipping shot") continue if 'timestamp' in locals(): timestamp += t[0] + (t[1] / 1000) else: timestamp = np.array([t[0] + (t[1] / 1000)]) if 'sum' in locals(): sum += data else: sum = np.array(data, copy=True) if 'sumsq' in locals(): sumsq += data * data else: sumsq = data * data if 'maximum' in locals(): maximum = np.maximum(maximum, data) else: maximum = np.array(data, copy=True) if command_line.options.do_minimum_projection: if 'minimum' in locals(): minimum = np.minimum(minimum, data) else: minimum = np.array(data, copy=True) nevent += 1 #sum the images across mpi cores if size > 1: print("Synchronizing rank", rank) totevent = np.zeros(nevent.shape) comm.Reduce(nevent, totevent) if rank == 0 and totevent[0] == 0: raise Sorry("No events found in the run") sumall = np.zeros(sum.shape).astype(sum.dtype) comm.Reduce(sum, sumall) sumsqall = np.zeros(sumsq.shape).astype(sumsq.dtype) comm.Reduce(sumsq, sumsqall) maxall = np.zeros(maximum.shape).astype(maximum.dtype) comm.Reduce(maximum, maxall, op=MPI.MAX) if command_line.options.do_minimum_projection: minall = np.zeros(maximum.shape).astype(minimum.dtype) comm.Reduce(minimum, minall, op=MPI.MIN) waveall = np.zeros(wavelength.shape).astype(wavelength.dtype) comm.Reduce(wavelength, waveall) distall = np.zeros(distance.shape).astype(distance.dtype) comm.Reduce(distance, distall) timeall = np.zeros(timestamp.shape).astype(timestamp.dtype) comm.Reduce(timestamp, timeall) if rank == 0: if size > 1: print("Synchronized") # Accumulating floating-point numbers introduces errors, # which may cause negative variances. Since a two-pass # approach is unacceptable, the standard deviation is # clamped at zero. mean = sumall / float(totevent[0]) variance = (sumsqall / float(totevent[0])) - (mean**2) variance[variance < 0] = 0 stddev = np.sqrt(variance) wavelength = waveall[0] / totevent[0] distance = distall[0] / totevent[0] pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value timestamp = timeall[0] / totevent[0] timestamp = (int(timestamp), timestamp % int(timestamp) * 1000) timestamp = cspad_tbx.evt_timestamp(timestamp) if command_line.options.as_pickle: extension = ".pickle" else: extension = ".cbf" dest_paths = [ cspad_tbx.pathsubst(command_line.options.averagepath + extension, evt, ds.env()), cspad_tbx.pathsubst(command_line.options.stddevpath + extension, evt, ds.env()), cspad_tbx.pathsubst(command_line.options.maxpath + extension, evt, ds.env()) ] if command_line.options.do_minimum_projection: dest_paths.append( cspad_tbx.pathsubst(command_line.options.minpath + extension, evt, ds.env())) dest_paths = [ os.path.join(command_line.options.outputdir, path) for path in dest_paths ] if 'Rayonix' in command_line.options.address: all_data = [mean, stddev, maxall] if command_line.options.do_minimum_projection: all_data.append(minall) from xfel.cxi.cspad_ana import rayonix_tbx pixel_size = rayonix_tbx.get_rayonix_pixel_size( command_line.options.bin_size) beam_center = [ command_line.options.override_beam_x, command_line.options.override_beam_y ] active_areas = flex.int([0, 0, mean.shape[1], mean.shape[0]]) split_address = cspad_tbx.address_split(address) old_style_address = split_address[0] + "-" + split_address[ 1] + "|" + split_address[2] + "-" + split_address[3] for data, path in zip(all_data, dest_paths): print("Saving", path) d = cspad_tbx.dpack( active_areas=active_areas, address=old_style_address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=flex.double(data), distance=distance, pixel_size=pixel_size, saturated_value=rayonix_tbx.rayonix_saturated_value, timestamp=timestamp, wavelength=wavelength) easy_pickle.dump(path, d) elif 'FeeHxSpectrometer' in command_line.options.address or 'XrayTransportDiagnostic' in command_line.options.address: all_data = [mean, stddev, maxall] split_address = cspad_tbx.address_split(address) old_style_address = split_address[0] + "-" + split_address[ 1] + "|" + split_address[2] + "-" + split_address[3] if command_line.options.do_minimum_projection: all_data.append(minall) for data, path in zip(all_data, dest_paths): d = cspad_tbx.dpack(address=old_style_address, data=flex.double(data), distance=distance, pixel_size=0.1, timestamp=timestamp, wavelength=wavelength) print("Saving", path) easy_pickle.dump(path, d) elif command_line.options.as_pickle: split_address = cspad_tbx.address_split(address) old_style_address = split_address[0] + "-" + split_address[ 1] + "|" + split_address[2] + "-" + split_address[3] xpp = 'xpp' in address.lower() if xpp: evt_time = cspad_tbx.evt_time( evt) # tuple of seconds, milliseconds timestamp = cspad_tbx.evt_timestamp( evt_time) # human readable format from iotbx.detectors.cspad_detector_formats import detector_format_version, reverse_timestamp from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas version_lookup = detector_format_version( old_style_address, reverse_timestamp(timestamp)[0]) assert version_lookup is not None active_areas = xpp_active_areas[version_lookup]['active_areas'] beam_center = [1765 // 2, 1765 // 2] else: if command_line.options.pickle_calib_dir is not None: metro_path = command_line.options.pickle_calib_dir elif command_line.options.pickle_optical_metrology: from xfel.cftbx.detector.cspad_cbf_tbx import get_calib_file_path metro_path = get_calib_file_path(run.env(), address, run) else: metro_path = libtbx.env.find_in_repositories( "xfel/metrology/CSPad/run4/CxiDs1.0_Cspad.0") sections = parse_calib.calib2sections(metro_path) beam_center, active_areas = cspad_tbx.cbcaa( cspad_tbx.getConfig(address, ds.env()), sections) class fake_quad(object): def __init__(self, q, d): self.q = q self.d = d def quad(self): return self.q def data(self): return self.d if xpp: quads = [ fake_quad(i, mean[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] mean = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads=quads) mean = flex.double(mean.astype(np.float64)) quads = [ fake_quad(i, stddev[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] stddev = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads=quads) stddev = flex.double(stddev.astype(np.float64)) quads = [ fake_quad(i, maxall[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] maxall = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads=quads) maxall = flex.double(maxall.astype(np.float64)) if command_line.options.do_minimum_projection: quads = [ fake_quad(i, minall[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] minall = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads=quads) minall = flex.double(minall.astype(np.float64)) else: quads = [ fake_quad(i, mean[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] mean = cspad_tbx.CsPadDetector(address, evt, ds.env(), sections, quads=quads) mean = flex.double(mean.astype(np.float64)) quads = [ fake_quad(i, stddev[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] stddev = cspad_tbx.CsPadDetector(address, evt, ds.env(), sections, quads=quads) stddev = flex.double(stddev.astype(np.float64)) quads = [ fake_quad(i, maxall[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] maxall = cspad_tbx.CsPadDetector(address, evt, ds.env(), sections, quads=quads) maxall = flex.double(maxall.astype(np.float64)) if command_line.options.do_minimum_projection: quads = [ fake_quad(i, minall[i * 8:(i + 1) * 8, :, :]) for i in range(4) ] minall = cspad_tbx.CsPadDetector(address, evt, ds.env(), sections, quads=quads) minall = flex.double(minall.astype(np.float64)) all_data = [mean, stddev, maxall] if command_line.options.do_minimum_projection: all_data.append(minall) for data, path in zip(all_data, dest_paths): print("Saving", path) d = cspad_tbx.dpack(active_areas=active_areas, address=old_style_address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=data, distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=timestamp, wavelength=wavelength) easy_pickle.dump(path, d) else: # load a header only cspad cbf from the slac metrology from xfel.cftbx.detector import cspad_cbf_tbx import pycbf base_dxtbx = cspad_cbf_tbx.env_dxtbx_from_slac_metrology( run, address) if base_dxtbx is None: raise Sorry("Couldn't load calibration file for run %d" % run.run()) all_data = [mean, stddev, maxall] if command_line.options.do_minimum_projection: all_data.append(minall) for data, path in zip(all_data, dest_paths): print("Saving", path) cspad_img = cspad_cbf_tbx.format_object_from_data( base_dxtbx, data, distance, wavelength, timestamp, address, round_to_int=False) cspad_img._cbf_handle.write_widefile(path, pycbf.CBF,\ pycbf.MIME_HEADERS|pycbf.MSG_DIGEST|pycbf.PAD_4K, 0)
asic_end = asic_start + 185 a = raw_data[asic_start:asic_end, :] asic_start = asic_end asic_end = asic_start + 185 b = raw_data[asic_start:asic_end, :] asic_start = asic_end quad_asics.append(numpy.concatenate((a, b), axis=1)) quad_data = numpy.dstack(quad_asics) quad_data = numpy.rollaxis(quad_data, 2, 0) data3d.append(fake_cspad_ElementV2(quad_data, i_quad)) env = fake_env(fake_config()) evt = fake_evt(data3d) beam_center, active_areas = cbcaa(fake_config(), sections) data = flex.int( CsPadDetector(address, evt, env, sections).astype(numpy.float64)) img_dict = dpack(active_areas=active_areas, address=address, beam_center_x=beam_center[0] * pixel_size, beam_center_y=beam_center[1] * pixel_size, data=data, distance=params.distance, pixel_size=pixel_size, timestamp=timestamp, wavelength=params.wavelength) img = NpyImage("", source_data=img_dict)
def convert_detector(raw_data, detector_format_version, address, optical_metrology_path=None): # https://confluence.slac.stanford.edu/display/PCDS/CSPad+metrology+and+calibration+files%2C+links data3d = [] if raw_data.shape == (5920,388): asic_start = 0 if optical_metrology_path is None: calib_dir = libtbx.env.find_in_repositories("xfel/metrology/CSPad/run4/CxiDs1.0_Cspad.0") sections = parse_calib.calib2sections(calib_dir) else: sections = parse_calib.calib2sections(optical_metrology_path) for i_quad in range(4): asic_size = 185 * 388 section_size = asic_size * 2 quad_start = i_quad * section_size * 4 quad_asics = [] for i_2x2 in range(4): for i_asic in range(2): asic_end = asic_start + 185 quad_asics.append(raw_data[asic_start:asic_end, :]) asic_start = asic_end quad_data = numpy.dstack(quad_asics) quad_data = numpy.rollaxis(quad_data, 2,0) data3d.append(fake_cspad_ElementV2(quad_data, i_quad)) env = fake_env(fake_config()) evt = fake_evt(data3d) return flex.double(cspad_tbx.CsPadDetector(address, evt, env, sections).astype(numpy.float64)), None else: asic_start = 0 if detector_format_version is not None and 'XPP' in detector_format_version: from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas rotations = xpp_active_areas[detector_format_version]['rotations'] active_areas = xpp_active_areas[detector_format_version]['active_areas'] det = flex.double([0]*(1765*1765)) det.reshape(flex.grid((1765,1765))) for i in xrange(64): row = active_areas[i*4] col = active_areas[i*4 + 1] block = flex.double(raw_data[i * 185:(i+1)*185, :]) det.matrix_paste_block_in_place(block.matrix_rot90(rotations[i]), row, col) return det, active_areas else: if optical_metrology_path is None: calib_dir = libtbx.env.find_in_repositories("xfel/metrology/CSPad/run4/CxiDs1.0_Cspad.0") sections = parse_calib.calib2sections(calib_dir) else: sections = parse_calib.calib2sections(optical_metrology_path) for i_quad in range(4): asic_size = 185 * 194 section_size = asic_size * 4 quad_start = i_quad * section_size * 4 quad_asics = [] for i_2x2 in range(4): for i_asic in range(2): asic_end = asic_start + 185 a = raw_data[asic_start:asic_end, :] asic_start = asic_end asic_end = asic_start + 185 b = raw_data[asic_start:asic_end, :] asic_start = asic_end quad_asics.append(numpy.concatenate((a,b),axis=1)) quad_data = numpy.dstack(quad_asics) quad_data = numpy.rollaxis(quad_data, 2,0) data3d.append(fake_cspad_ElementV2(quad_data, i_quad)) env = fake_env(fake_config()) evt = fake_evt(data3d) beam_center, active_areas = cspad_tbx.cbcaa(fake_config(),sections) return flex.double(cspad_tbx.CsPadDetector(address, evt, env, sections).astype(numpy.float64)), active_areas
def average(argv=None): if argv == None: argv = sys.argv[1:] try: from mpi4py import MPI except ImportError: raise Sorry("MPI not found") command_line = (libtbx.option_parser.option_parser( usage=""" %s [-p] -c config -x experiment -a address -r run -d detz_offset [-o outputdir] [-A averagepath] [-S stddevpath] [-M maxpath] [-n numevents] [-s skipnevents] [-v] [-m] [-b bin_size] [-X override_beam_x] [-Y override_beam_y] [-D xtc_dir] [-f] To write image pickles use -p, otherwise the program writes CSPAD CBFs. Writing CBFs requires the geometry to be already deployed. Examples: cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 Use one process on the current node to process all the events from run 25 of experiment cxi49812, using a detz_offset of 571. mpirun -n 16 cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 As above, using 16 cores on the current node. bsub -a mympi -n 100 -o average.out -q psanaq cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 -o cxi49812 As above, using the psanaq and 100 cores, putting the log in average.out and the output images in the folder cxi49812. """ % libtbx.env.dispatcher_name) .option(None, "--as_pickle", "-p", action="store_true", default=False, dest="as_pickle", help="Write results as image pickle files instead of cbf files") .option(None, "--config", "-c", type="string", default=None, dest="config", metavar="PATH", help="psana config file") .option(None, "--experiment", "-x", type="string", default=None, dest="experiment", help="experiment name (eg cxi84914)") .option(None, "--run", "-r", type="int", default=None, dest="run", help="run number") .option(None, "--address", "-a", type="string", default="CxiDs2.0:Cspad.0", dest="address", help="detector address name (eg CxiDs2.0:Cspad.0)") .option(None, "--detz_offset", "-d", type="float", default=None, dest="detz_offset", help="offset (in mm) from sample interaction region to back of CSPAD detector rail (CXI), or detector distance (XPP)") .option(None, "--outputdir", "-o", type="string", default=".", dest="outputdir", metavar="PATH", help="Optional path to output directory for output files") .option(None, "--averagebase", "-A", type="string", default="{experiment!l}_avg-r{run:04d}", dest="averagepath", metavar="PATH", help="Path to output average image without extension. String substitution allowed") .option(None, "--stddevbase", "-S", type="string", default="{experiment!l}_stddev-r{run:04d}", dest="stddevpath", metavar="PATH", help="Path to output standard deviation image without extension. String substitution allowed") .option(None, "--maxbase", "-M", type="string", default="{experiment!l}_max-r{run:04d}", dest="maxpath", metavar="PATH", help="Path to output maximum projection image without extension. String substitution allowed") .option(None, "--numevents", "-n", type="int", default=None, dest="numevents", help="Maximum number of events to process. Default: all") .option(None, "--skipevents", "-s", type="int", default=0, dest="skipevents", help="Number of events in the beginning of the run to skip. Default: 0") .option(None, "--verbose", "-v", action="store_true", default=False, dest="verbose", help="Print more information about progress") .option(None, "--pickle-optical-metrology", "-m", action="store_true", default=False, dest="pickle_optical_metrology", help="If writing pickle files, use the optical metrology in the experiment's calib directory") .option(None, "--bin_size", "-b", type="int", default=None, dest="bin_size", help="Rayonix detector bin size") .option(None, "--override_beam_x", "-X", type="float", default=None, dest="override_beam_x", help="Rayonix detector beam center x coordinate") .option(None, "--override_beam_y", "-Y", type="float", default=None, dest="override_beam_y", help="Rayonix detector beam center y coordinate") .option(None, "--calib_dir", "-C", type="string", default=None, dest="calib_dir", metavar="PATH", help="calibration directory") .option(None, "--xtc_dir", "-D", type="string", default=None, dest="xtc_dir", metavar="PATH", help="xtc stream directory") .option(None, "--use_ffb", "-f", action="store_true", default=False, dest="use_ffb", help="Use the fast feedback filesystem at LCLS. Only for the active experiment!") ).process(args=argv) if len(command_line.args) > 0 or \ command_line.options.as_pickle is None or \ command_line.options.experiment is None or \ command_line.options.run is None or \ command_line.options.address is None or \ command_line.options.detz_offset is None or \ command_line.options.averagepath is None or \ command_line.options.stddevpath is None or \ command_line.options.maxpath is None or \ command_line.options.pickle_optical_metrology is None: command_line.parser.show_help() return # set this to sys.maxint to analyze all events if command_line.options.numevents is None: maxevents = sys.maxint else: maxevents = command_line.options.numevents comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() if command_line.options.config is not None: psana.setConfigFile(command_line.options.config) dataset_name = "exp=%s:run=%d:idx"%(command_line.options.experiment, command_line.options.run) if command_line.options.xtc_dir is not None: if command_line.options.use_ffb: raise Sorry("Cannot specify the xtc_dir and use SLAC's ffb system") dataset_name += ":dir=%s"%command_line.options.xtc_dir elif command_line.options.use_ffb: # as ffb is only at SLAC, ok to hardcode /reg/d here dataset_name += ":dir=/reg/d/ffb/%s/%s/xtc"%(command_line.options.experiment[0:3],command_line.options.experiment) ds = psana.DataSource(dataset_name) address = command_line.options.address src = psana.Source('DetInfo(%s)'%address) if not command_line.options.as_pickle: psana_det = psana.Detector(address, ds.env()) nevent = np.array([0.]) for run in ds.runs(): runnumber = run.run() # list of all events if command_line.options.skipevents > 0: print "Skipping first %d events"%command_line.options.skipevents times = run.times()[command_line.options.skipevents:] nevents = min(len(times),maxevents) # chop the list into pieces, depending on rank. This assigns each process # events such that the get every Nth event where N is the number of processes mytimes = [times[i] for i in xrange(nevents) if (i+rank)%size == 0] for i in xrange(len(mytimes)): if i%10==0: print 'Rank',rank,'processing event',rank*len(mytimes)+i,', ',i,'of',len(mytimes) evt = run.event(mytimes[i]) #print "Event #",rank*mylength+i," has id:",evt.get(EventId) if 'Rayonix' in command_line.options.address: data = evt.get(Camera.FrameV1,src) if data is None: print "No data" continue data=data.data16().astype(np.float64) elif command_line.options.as_pickle: data = evt.get(psana.ndarray_float64_3, src, 'image0') else: # get numpy array, 32x185x388 data = psana_det.calib(evt) # applies psana's complex run-dependent calibrations if data is None: print "No data" continue d = cspad_tbx.env_distance(address, run.env(), command_line.options.detz_offset) if d is None: print "No distance, skipping shot" continue if 'distance' in locals(): distance += d else: distance = np.array([float(d)]) w = cspad_tbx.evt_wavelength(evt) if w is None: print "No wavelength, skipping shot" continue if 'wavelength' in locals(): wavelength += w else: wavelength = np.array([w]) t = cspad_tbx.evt_time(evt) if t is None: print "No timestamp, skipping shot" continue if 'timestamp' in locals(): timestamp += t[0] + (t[1]/1000) else: timestamp = np.array([t[0] + (t[1]/1000)]) if 'sum' in locals(): sum+=data else: sum=np.array(data, copy=True) if 'sumsq' in locals(): sumsq+=data*data else: sumsq=data*data if 'maximum' in locals(): maximum=np.maximum(maximum,data) else: maximum=np.array(data, copy=True) nevent += 1 #sum the images across mpi cores if size > 1: print "Synchronizing rank", rank totevent = np.zeros(nevent.shape) comm.Reduce(nevent,totevent) if rank == 0 and totevent[0] == 0: raise Sorry("No events found in the run") sumall = np.zeros(sum.shape).astype(sum.dtype) comm.Reduce(sum,sumall) sumsqall = np.zeros(sumsq.shape).astype(sumsq.dtype) comm.Reduce(sumsq,sumsqall) maxall = np.zeros(maximum.shape).astype(maximum.dtype) comm.Reduce(maximum,maxall, op=MPI.MAX) waveall = np.zeros(wavelength.shape).astype(wavelength.dtype) comm.Reduce(wavelength,waveall) distall = np.zeros(distance.shape).astype(distance.dtype) comm.Reduce(distance,distall) timeall = np.zeros(timestamp.shape).astype(timestamp.dtype) comm.Reduce(timestamp,timeall) if rank==0: if size > 1: print "Synchronized" # Accumulating floating-point numbers introduces errors, # which may cause negative variances. Since a two-pass # approach is unacceptable, the standard deviation is # clamped at zero. mean = sumall / float(totevent[0]) variance = (sumsqall / float(totevent[0])) - (mean**2) variance[variance < 0] = 0 stddev = np.sqrt(variance) wavelength = waveall[0] / totevent[0] distance = distall[0] / totevent[0] pixel_size = cspad_tbx.pixel_size saturated_value = cspad_tbx.cspad_saturated_value timestamp = timeall[0] / totevent[0] timestamp = (int(timestamp), timestamp % int(timestamp) * 1000) timestamp = cspad_tbx.evt_timestamp(timestamp) if command_line.options.as_pickle: extension = ".pickle" else: extension = ".cbf" dest_paths = [cspad_tbx.pathsubst(command_line.options.averagepath + extension, evt, ds.env()), cspad_tbx.pathsubst(command_line.options.stddevpath + extension, evt, ds.env()), cspad_tbx.pathsubst(command_line.options.maxpath + extension, evt, ds.env())] dest_paths = [os.path.join(command_line.options.outputdir, path) for path in dest_paths] if 'Rayonix' in command_line.options.address: from xfel.cxi.cspad_ana import rayonix_tbx pixel_size = rayonix_tbx.get_rayonix_pixel_size(command_line.options.bin_size) beam_center = [command_line.options.override_beam_x,command_line.options.override_beam_y] detector_dimensions = rayonix_tbx.get_rayonix_detector_dimensions(command_line.options.bin_size) active_areas = flex.int([0,0,detector_dimensions[0],detector_dimensions[1]]) split_address = cspad_tbx.address_split(address) old_style_address = split_address[0] + "-" + split_address[1] + "|" + split_address[2] + "-" + split_address[3] for data, path in zip([mean, stddev, maxall], dest_paths): print "Saving", path d = cspad_tbx.dpack( active_areas=active_areas, address=old_style_address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=flex.double(data), distance=distance, pixel_size=pixel_size, saturated_value=rayonix_tbx.rayonix_saturated_value, timestamp=timestamp, wavelength=wavelength) easy_pickle.dump(path, d) elif command_line.options.as_pickle: split_address = cspad_tbx.address_split(address) old_style_address = split_address[0] + "-" + split_address[1] + "|" + split_address[2] + "-" + split_address[3] xpp = 'xpp' in address.lower() if xpp: evt_time = cspad_tbx.evt_time(evt) # tuple of seconds, milliseconds timestamp = cspad_tbx.evt_timestamp(evt_time) # human readable format from xfel.detector_formats import detector_format_version, reverse_timestamp from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas version_lookup = detector_format_version(old_style_address, reverse_timestamp(timestamp)[0]) assert version_lookup is not None active_areas = xpp_active_areas[version_lookup]['active_areas'] beam_center = [1765 // 2, 1765 // 2] else: if command_line.options.calib_dir is not None: metro_path = command_line.options.calib_dir elif command_line.options.pickle_optical_metrology: from xfel.cftbx.detector.cspad_cbf_tbx import get_calib_file_path metro_path = get_calib_file_path(run.env(), address, run) else: metro_path = libtbx.env.find_in_repositories("xfel/metrology/CSPad/run4/CxiDs1.0_Cspad.0") sections = parse_calib.calib2sections(metro_path) beam_center, active_areas = cspad_tbx.cbcaa( cspad_tbx.getConfig(address, ds.env()), sections) class fake_quad(object): def __init__(self, q, d): self.q = q self.d = d def quad(self): return self.q def data(self): return self.d if xpp: quads = [fake_quad(i, mean[i*8:(i+1)*8,:,:]) for i in xrange(4)] mean = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads = quads) mean = flex.double(mean.astype(np.float64)) quads = [fake_quad(i, stddev[i*8:(i+1)*8,:,:]) for i in xrange(4)] stddev = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads = quads) stddev = flex.double(stddev.astype(np.float64)) quads = [fake_quad(i, maxall[i*8:(i+1)*8,:,:]) for i in xrange(4)] maxall = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads = quads) maxall = flex.double(maxall.astype(np.float64)) else: quads = [fake_quad(i, mean[i*8:(i+1)*8,:,:]) for i in xrange(4)] mean = cspad_tbx.CsPadDetector( address, evt, ds.env(), sections, quads=quads) mean = flex.double(mean.astype(np.float64)) quads = [fake_quad(i, stddev[i*8:(i+1)*8,:,:]) for i in xrange(4)] stddev = cspad_tbx.CsPadDetector( address, evt, ds.env(), sections, quads=quads) stddev = flex.double(stddev.astype(np.float64)) quads = [fake_quad(i, maxall[i*8:(i+1)*8,:,:]) for i in xrange(4)] maxall = cspad_tbx.CsPadDetector( address, evt, ds.env(), sections, quads=quads) maxall = flex.double(maxall.astype(np.float64)) for data, path in zip([mean, stddev, maxall], dest_paths): print "Saving", path d = cspad_tbx.dpack( active_areas=active_areas, address=old_style_address, beam_center_x=pixel_size * beam_center[0], beam_center_y=pixel_size * beam_center[1], data=data, distance=distance, pixel_size=pixel_size, saturated_value=saturated_value, timestamp=timestamp, wavelength=wavelength) easy_pickle.dump(path, d) else: # load a header only cspad cbf from the slac metrology from xfel.cftbx.detector import cspad_cbf_tbx import pycbf base_dxtbx = cspad_cbf_tbx.env_dxtbx_from_slac_metrology(run, address) if base_dxtbx is None: raise Sorry("Couldn't load calibration file for run %d"%run.run()) for data, path in zip([mean, stddev, maxall], dest_paths): print "Saving", path cspad_img = cspad_cbf_tbx.format_object_from_data(base_dxtbx, data, distance, wavelength, timestamp, address) cspad_img._cbf_handle.write_widefile(path, pycbf.CBF,\ pycbf.MIME_HEADERS|pycbf.MSG_DIGEST|pycbf.PAD_4K, 0)
def convert_detector(raw_data, detector_format_version, address, optical_metrology_path=None): # https://confluence.slac.stanford.edu/display/PCDS/CSPad+metrology+and+calibration+files%2C+links data3d = [] if raw_data.shape == (5920, 388): asic_start = 0 if optical_metrology_path is None: calib_dir = libtbx.env.find_in_repositories( "xfel/metrology/CSPad/run4/CxiDs1.0_Cspad.0") sections = parse_calib.calib2sections(calib_dir) else: sections = parse_calib.calib2sections(optical_metrology_path) for i_quad in range(4): asic_size = 185 * 388 section_size = asic_size * 2 quad_start = i_quad * section_size * 4 quad_asics = [] for i_2x2 in range(4): for i_asic in range(2): asic_end = asic_start + 185 quad_asics.append(raw_data[asic_start:asic_end, :]) asic_start = asic_end quad_data = numpy.dstack(quad_asics) quad_data = numpy.rollaxis(quad_data, 2, 0) data3d.append(fake_cspad_ElementV2(quad_data, i_quad)) env = fake_env(fake_config()) evt = fake_evt(data3d) return flex.double( cspad_tbx.CsPadDetector(address, evt, env, sections).astype(numpy.float64)), None else: asic_start = 0 if detector_format_version is not None and 'XPP' in detector_format_version: from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas rotations = xpp_active_areas[detector_format_version]['rotations'] active_areas = xpp_active_areas[detector_format_version][ 'active_areas'] det = flex.double([0] * (1765 * 1765)) det.reshape(flex.grid((1765, 1765))) for i in range(64): row = active_areas[i * 4] col = active_areas[i * 4 + 1] block = flex.double(raw_data[i * 185:(i + 1) * 185, :]) det.matrix_paste_block_in_place( block.matrix_rot90(rotations[i]), row, col) return det, active_areas else: if optical_metrology_path is None: calib_dir = libtbx.env.find_in_repositories( "xfel/metrology/CSPad/run4/CxiDs1.0_Cspad.0") sections = parse_calib.calib2sections(calib_dir) else: sections = parse_calib.calib2sections(optical_metrology_path) for i_quad in range(4): asic_size = 185 * 194 section_size = asic_size * 4 quad_start = i_quad * section_size * 4 quad_asics = [] for i_2x2 in range(4): for i_asic in range(2): asic_end = asic_start + 185 a = raw_data[asic_start:asic_end, :] asic_start = asic_end asic_end = asic_start + 185 b = raw_data[asic_start:asic_end, :] asic_start = asic_end quad_asics.append(numpy.concatenate((a, b), axis=1)) quad_data = numpy.dstack(quad_asics) quad_data = numpy.rollaxis(quad_data, 2, 0) data3d.append(fake_cspad_ElementV2(quad_data, i_quad)) env = fake_env(fake_config()) evt = fake_evt(data3d) beam_center, active_areas = cspad_tbx.cbcaa( fake_config(), sections) return flex.double( cspad_tbx.CsPadDetector(address, evt, env, sections).astype( numpy.float64)), active_areas
asic_end = asic_start + 185 a = raw_data[asic_start:asic_end, :] asic_start = asic_end asic_end = asic_start + 185 b = raw_data[asic_start:asic_end, :] asic_start = asic_end quad_asics.append(numpy.concatenate((a,b),axis=1)) quad_data = numpy.dstack(quad_asics) quad_data = numpy.rollaxis(quad_data, 2,0) data3d.append(fake_cspad_ElementV2(quad_data, i_quad)) env = fake_env(fake_config()) evt = fake_evt(data3d) beam_center, active_areas = cbcaa(fake_config(),sections) data = flex.int(CsPadDetector(address, evt, env, sections).astype(numpy.float64)) img_dict = dpack( active_areas=active_areas, address=address, beam_center_x=beam_center[0]*pixel_size, beam_center_y=beam_center[1]*pixel_size, data=data, distance=params.distance, pixel_size=pixel_size, timestamp=timestamp, wavelength=params.wavelength) img = NpyImage("", source_data=img_dict)