Example #1
0
    def __init__(self, image_file, **kwargs):
        super().__init__(image_file, locator_scope=rayonix_locator_scope, **kwargs)

        cfgs = self._ds.env().configStore()
        rayonix_cfg = cfgs.get(psana.Rayonix.ConfigV2, psana.Source("Rayonix"))
        if self.params.rayonix.bin_size is None:
            assert rayonix_cfg.binning_f() == rayonix_cfg.binning_s()
            bin_size = rayonix_cfg.binning_f()
        else:
            bin_size = self.params.rayonix.bin_size
        self._pixel_size = rayonix_tbx.get_rayonix_pixel_size(bin_size)
        self._image_size = rayonix_tbx.get_rayonix_detector_dimensions(self._ds.env())
Example #2
0
    def set_up_hitfinder(self):
        # See r17537 of mod_average.py.
        device = cspad_tbx.address_split(self.address)[2]
        if device == 'Cspad':
            img_dim = (1765, 1765)
            pixel_size = cspad_tbx.pixel_size
        elif device == 'marccd':
            img_dim = (4500, 4500)
            pixel_size = 0.079346
        elif device == 'Rayonix':
            img_dim = rayonix_tbx.get_rayonix_detector_dimensions(
                self.bin_size)
            pixel_size = rayonix_tbx.get_rayonix_pixel_size(self.bin_size)
        else:
            raise RuntimeError("Unsupported device %s" % self.address)

        if self.beam_center is None:
            self.beam_center = [0, 0]

        self.hitfinder_d = cspad_tbx.dpack(
            active_areas=self.active_areas,
            beam_center_x=pixel_size * self.beam_center[0],
            beam_center_y=pixel_size * self.beam_center[1],
            data=flex.int(flex.grid(img_dim[0], img_dim[1]), 0),
            xtal_target=self.m_xtal_target)

        if device == 'Cspad':
            # Figure out which ASIC:s are on the central four sensors.  This
            # only applies to the CSPAD.
            assert len(self.active_areas) % 4 == 0
            distances = flex.double()
            for i in range(0, len(self.active_areas), 4):
                cenasic = (
                    (self.active_areas[i + 0] + self.active_areas[i + 2]) / 2,
                    (self.active_areas[i + 1] + self.active_areas[i + 3]) / 2)
                distances.append(
                    math.hypot(cenasic[0] - self.beam_center[0],
                               cenasic[1] - self.beam_center[1]))
            orders = flex.sort_permutation(distances)

            # Use the central 8 ASIC:s (central 4 sensors).
            flags = flex.int(len(self.active_areas) // 4, 0)
            for i in range(8):
                flags[orders[i]] = 1
            self.asic_filter = "distl.tile_flags=" + ",".join(
                ["%1d" % b for b in flags])

        elif device == 'marccd':
            # There is only one active area for the MAR CCD, so use it.
            self.asic_filter = "distl.tile_flags=1"
        elif device == 'Rayonix':
            # There is only one active area for the Rayonix, so use it.
            self.asic_filter = "distl.tile_flags=1"
Example #3
0
 def _detector(self):
   import psana
   pixel_size = rayonix_tbx.get_rayonix_pixel_size(self.params.rayonix.bin_size)
   return self._detector_factory.simple(
     sensor = 'UNKNOWN',
     distance = 100.0,
     beam_centre = (50., 50.),
     fast_direction = '+x',
     slow_direction = '-y',
     pixel_size = (pixel_size, pixel_size),
     image_size = rayonix_tbx.get_rayonix_detector_dimensions(self.params.rayonix.bin_size),
     trusted_range = (rayonix_tbx.rayonix_min_trusted_value, rayonix_tbx.rayonix_saturated_value),
     mask = [])
Example #4
0
  def set_up_hitfinder(self):
    # See r17537 of mod_average.py.
    device = cspad_tbx.address_split(self.address)[2]
    if device == 'Cspad':
      img_dim = (1765, 1765)
      pixel_size = cspad_tbx.pixel_size
    elif device == 'marccd':
      img_dim = (4500, 4500)
      pixel_size = 0.079346
    elif device == 'Rayonix':
      img_dim = rayonix_tbx.get_rayonix_detector_dimensions(self.bin_size)
      pixel_size = rayonix_tbx.get_rayonix_pixel_size(self.bin_size)
    else:
      raise RuntimeError("Unsupported device %s" % self.address)

    if self.beam_center is None:
      self.beam_center = [0,0]

    self.hitfinder_d = cspad_tbx.dpack(
      active_areas=self.active_areas,
      beam_center_x=pixel_size * self.beam_center[0],
      beam_center_y=pixel_size * self.beam_center[1],
      data=flex.int(flex.grid(img_dim[0], img_dim[1]), 0),
      xtal_target=self.m_xtal_target)

    if device == 'Cspad':
      # Figure out which ASIC:s are on the central four sensors.  This
      # only applies to the CSPAD.
      assert len(self.active_areas) % 4 == 0
      distances = flex.double()
      for i in range(0, len(self.active_areas), 4):
        cenasic = ((self.active_areas[i + 0] + self.active_areas[i + 2]) / 2,
                   (self.active_areas[i + 1] + self.active_areas[i + 3]) / 2)
        distances.append(math.hypot(cenasic[0] - self.beam_center[0],
                                    cenasic[1] - self.beam_center[1]))
      orders = flex.sort_permutation(distances)

      # Use the central 8 ASIC:s (central 4 sensors).
      flags = flex.int(len(self.active_areas) // 4, 0)
      for i in range(8):
        flags[orders[i]] = 1
      self.asic_filter = "distl.tile_flags=" + ",".join(
        ["%1d" % b for b in flags])

    elif device == 'marccd':
      # There is only one active area for the MAR CCD, so use it.
      self.asic_filter = "distl.tile_flags=1"
    elif device == 'Rayonix':
      # There is only one active area for the Rayonix, so use it.
      self.asic_filter = "distl.tile_flags=1"
Example #5
0
    def __init__(self, params, run, detector, **kwargs):
        from xfel.cxi.cspad_ana import rayonix_tbx
        import psana
        FormatXTCSingleEvent.__init__(self, params, run, detector, **kwargs)

        self._cached_detector = {}

        cfgs = run.env().configStore()
        rayonix_cfg = cfgs.get(psana.Rayonix.ConfigV2, psana.Source("Rayonix"))
        if params.rayonix.bin_size is None:
            assert rayonix_cfg.binning_f() == rayonix_cfg.binning_s()
            bin_size = rayonix_cfg.binning_f()
        else:
            bin_size = params.rayonix.bin_size
        self._pixel_size = rayonix_tbx.get_rayonix_pixel_size(bin_size)
        self._image_size = rayonix_tbx.get_rayonix_detector_dimensions(
            run.env())
Example #6
0
    def __init__(self, image_file, **kwargs):
        super(FormatXTCRayonix, self).__init__(
            image_file, locator_scope=rayonix_locator_scope, **kwargs
        )
        self._ds = FormatXTCRayonix._get_datasource(image_file, self.params)
        self._env = self._ds.env()
        self.populate_events()
        self.n_images = len(self.times)

        cfgs = self._ds.env().configStore()
        rayonix_cfg = cfgs.get(psana.Rayonix.ConfigV2, psana.Source("Rayonix"))
        if self.params.rayonix.bin_size is None:
            assert rayonix_cfg.binning_f() == rayonix_cfg.binning_s()
            bin_size = rayonix_cfg.binning_f()
        else:
            bin_size = self.params.rayonix.bin_size
        self._pixel_size = rayonix_tbx.get_rayonix_pixel_size(bin_size)
        self._image_size = rayonix_tbx.get_rayonix_detector_dimensions(self._ds.env())
Example #7
0
  def beginjob(self, evt, env):
    """The beginjob() function does one-time initialisation from
    event- or environment data.  It is called at an XTC configure
    transition.

    @param evt Event data object, a configure object
    @param env Environment object
    """

    super(common_mode_correction, self).beginjob(evt, env)
    # Load the dark image and ensure it is signed and at least 32 bits
    # wide, since it will be used for differencing.  If a dark image
    # is provided, a standard deviation image is required, and all the
    # ADU scales must match up.
    #
    # XXX Can we zap all the ADU_SCALE stuff?
    #
    # XXX Do we really need to store the substituted values in the
    # instance here?  At least self._dark_path is referenced later on.
    #
    # Note that this will load the dark, standard deviation and gain
    # once (SEVERAL TIMES) for each process, but the gain is that we
    # can do substitutions.  But it is only done at the beginning of
    # the job.
    self.dark_img = None
    if self._dark_path is not None:
      self._dark_path = cspad_tbx.getOptEvalOrString(
        cspad_tbx.pathsubst(self._dark_path, evt, env))

      assert self._dark_stddev_path is not None
      dark_dict = easy_pickle.load(self._dark_path)
      #assert "ADU_SCALE" not in dark_dict # force use of recalculated dark
      self.dark_img = dark_dict['DATA']
      assert isinstance(self.dark_img, flex.double)

      self._dark_stddev_path = cspad_tbx.getOptEvalOrString(
        cspad_tbx.pathsubst(self._dark_stddev_path, evt, env))

      self.dark_stddev = easy_pickle.load(self._dark_stddev_path)['DATA']
      assert isinstance(self.dark_stddev, flex.double)
      self.dark_mask = (self.dark_stddev > 0)

    # Load the mask image and ensure it is signed and at least 32 bits
    # wide, since it will be used for differencing.
    self.gain_map = None
    if self._gain_map_path is not None:
      self._gain_map_path = cspad_tbx.getOptEvalOrString(
        cspad_tbx.pathsubst(self._gain_map_path, evt, env))
      self.gain_map = easy_pickle.load(self._gain_map_path)['DATA']
      if self.gain_map_level is not None:
        sel = flex.bool([bool(f) for f in self.gain_map])
        sel.reshape(flex.grid(self.gain_map.focus()))
        self.gain_map = self.gain_map.set_selected(~sel, self.gain_map_level)
        self.gain_map = self.gain_map.set_selected(sel, 1)
      assert isinstance(self.gain_map, flex.double)

    self.mask_img = None
    if self._mask_path is not None:
      self._mask_path = cspad_tbx.getOptEvalOrString(
        cspad_tbx.pathsubst(self._mask_path, evt, env))

      self.mask_img = easy_pickle.load(self._mask_path)['DATA']
      assert isinstance(self.mask_img, flex.double) \
        or   isinstance(self.mask_img, flex.int)

    if self.address == 'XppGon-0|marccd-0':
      #mod_mar.py will set these during its event function
      self.active_areas = None
      self.beam_center = None
    elif self.address == 'XppEndstation-0|Rayonix-0' or \
         self.address == 'MfxEndstation-0|Rayonix-0':
      assert self.override_beam_x is not None
      assert self.override_beam_y is not None
      from xfel.cxi.cspad_ana import rayonix_tbx
      maxx, maxy = rayonix_tbx.get_rayonix_detector_dimensions(self.bin_size)
      if self.crop_rayonix:
        bx = int(round(self.override_beam_x))
        by = int(round(self.override_beam_y))
        minsize = min([bx,by,maxx-bx,maxy-by])
        self.beam_center = minsize,minsize
        self.active_areas = flex.int([0,0,2*minsize,2*minsize])
        self.rayonix_crop_slice = slice(by-minsize,by+minsize), slice(bx-minsize,bx+minsize)
      else:
        self.beam_center = self.override_beam_x,self.override_beam_y
        self.active_areas = flex.int([0,0,maxx,maxy])
    elif self.address == 'XppGon-0|Cspad-0':
      evt_time = cspad_tbx.evt_time(evt) # tuple of seconds, milliseconds
      timestamp = cspad_tbx.evt_timestamp(evt_time) # human readable format
      from iotbx.detectors.cspad_detector_formats import detector_format_version, reverse_timestamp
      from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas
      version_lookup = detector_format_version(self.address, reverse_timestamp(timestamp)[0])
      assert version_lookup is not None
      self.active_areas = xpp_active_areas[version_lookup]['active_areas']
      self.beam_center = [1765 // 2, 1765 // 2]
    else:
      (self.beam_center, self.active_areas) = cspad_tbx.cbcaa(
        cspad_tbx.getConfig(self.address, env), self.sections)
Example #8
0
def submit_job(app, job):
    import os, libtbx.load_env
    from xfel.ui import settings_dir
    configs_dir = os.path.join(settings_dir, "cfgs")
    if not os.path.exists(configs_dir):
        os.makedirs(configs_dir)
    target_phil_path = os.path.join(
        configs_dir, "%s_%s_r%04d_t%03d_rg%03d_params.phil" %
        (app.params.experiment, app.params.experiment_tag, job.run.run,
         job.trial.trial, job.rungroup.id))
    dispatcher = app.params.dispatcher

    phil_str = job.trial.target_phil_str
    if job.rungroup.extra_phil_str is not None:
        phil_str += "\n" + job.rungroup.extra_phil_str

    from xfel.ui import known_dials_dispatchers
    if dispatcher in known_dials_dispatchers:
        import importlib
        orig_phil_scope = importlib.import_module(
            known_dials_dispatchers[dispatcher]).phil_scope
        from iotbx.phil import parse
        if job.rungroup.two_theta_low is not None or job.rungroup.two_theta_high is not None:
            override_str = """
      radial_average {
        enable = True
        show_plots = False
        verbose = False
        output_bins = False
      }
      """
            phil_scope = orig_phil_scope.fetch(parse(override_str))
        else:
            phil_scope = orig_phil_scope

        trial_params = phil_scope.fetch(parse(phil_str)).extract()

        image_format = job.rungroup.format
        assert image_format in ['cbf', 'pickle']
        if image_format == 'cbf':
            if "rayonix" in job.rungroup.detector_address.lower():
                mode = "rayonix"
            elif "cspad" in job.rungroup.detector_address.lower():
                mode = "cspad"
            elif "jungfrau" in job.rungroup.detector_address.lower():
                mode = "jungfrau"
            else:
                assert False, "Couldn't figure out what kind of detector is specified by address %s" % job.rungroup.detector_address
        if dispatcher == 'cctbx.xfel.xtc_process':
            trial_params.format.file_format = image_format
            trial_params.format.cbf.mode = mode
    elif dispatcher == "cxi.xtc_process":
        image_format = 'pickle'
    else:
        raise RuntimeError("Unknown dispatcher: %s" % dispatcher)

    if job.rungroup.calib_dir is not None or job.rungroup.config_str is not None or dispatcher == 'cxi.xtc_process' or image_format == 'pickle':
        config_path = os.path.join(
            configs_dir, "%s_%s_r%04d_t%03d_rg%03d.cfg" %
            (app.params.experiment, app.params.experiment_tag, job.run.run,
             job.trial.trial, job.rungroup.id))
    else:
        config_path = None

    # Dictionary for formating the submit phil and, if used, the labelit cfg file
    d = dict(
        # Generally for the LABELIT backend or image pickles
        address=job.rungroup.detector_address,
        default_calib_dir=libtbx.env.find_in_repositories(
            "xfel/metrology/CSPad/run4/CxiDs1.0_Cspad.0"),
        dark_avg_path=job.rungroup.dark_avg_path,
        dark_stddev_path=job.rungroup.dark_stddev_path,
        untrusted_pixel_mask_path=job.rungroup.untrusted_pixel_mask_path,
        detz_parameter=job.rungroup.detz_parameter,
        gain_map_path=job.rungroup.gain_map_path,
        gain_mask_level=job.rungroup.gain_mask_level,
        beamx=job.rungroup.beamx,
        beamy=job.rungroup.beamy,
        energy=job.rungroup.energy,
        binning=job.rungroup.binning,
        two_theta_low=job.rungroup.two_theta_low,
        two_theta_high=job.rungroup.two_theta_high,
        # Generally for job submission
        dry_run=app.params.dry_run,
        dispatcher=app.params.dispatcher,
        cfg=config_path,
        experiment=app.params.experiment,
        run_num=job.run.run,
        output_dir=app.params.output_folder,
        use_ffb=app.params.use_ffb,
        # Generally for both
        trial=job.trial.trial,
        rungroup=job.rungroup.rungroup_id,
        experiment_tag=app.params.experiment_tag,
        calib_dir=job.rungroup.calib_dir,
        nproc=app.params.mp.nproc,
        queue=app.params.mp.queue,
        target=target_phil_path,
        host=app.params.db.host,
        dbname=app.params.db.name,
        user=app.params.db.user,
    )
    if app.params.db.password is not None and len(app.params.db.password) == 0:
        d['password'] = None
    else:
        d['password'] = app.params.db.password

    phil = open(target_phil_path, "w")

    if dispatcher == 'cxi.xtc_process':
        phil.write(phil_str)
    elif dispatcher in known_dials_dispatchers:
        extra_scope = None
        if dispatcher == 'cctbx.xfel.xtc_process':
            if image_format == "cbf":
                trial_params.input.address = job.rungroup.detector_address
                trial_params.format.cbf.detz_offset = job.rungroup.detz_parameter
                trial_params.format.cbf.override_energy = job.rungroup.energy
                trial_params.format.cbf.invalid_pixel_mask = job.rungroup.untrusted_pixel_mask_path
                if mode == 'cspad':
                    trial_params.format.cbf.cspad.gain_mask_value = job.rungroup.gain_mask_level
                elif mode == 'rayonix':
                    trial_params.format.cbf.rayonix.bin_size = job.rungroup.binning
                    trial_params.format.cbf.rayonix.override_beam_x = job.rungroup.beamx
                    trial_params.format.cbf.rayonix.override_beam_y = job.rungroup.beamy
            trial_params.dispatch.process_percent = job.trial.process_percent

            if trial_params.input.known_orientations_folder is not None:
                trial_params.input.known_orientations_folder = trial_params.input.known_orientations_folder.format(
                    run=job.run.run)
        else:
            trial_params.spotfinder.lookup.mask = job.rungroup.untrusted_pixel_mask_path
            trial_params.integration.lookup.mask = job.rungroup.untrusted_pixel_mask_path

            locator_path = os.path.join(
                configs_dir, "%s_%s_r%04d_t%03d_rg%03d.loc" %
                (app.params.experiment, app.params.experiment_tag, job.run.run,
                 job.trial.trial, job.rungroup.id))
            locator = open(locator_path, 'w')
            locator.write("experiment=%s\n" % app.params.experiment)
            locator.write("run=%d\n" % job.run.run)
            locator.write("detector_address=%s\n" %
                          job.rungroup.detector_address)

            if image_format == "cbf":
                if mode == 'rayonix':
                    from xfel.cxi.cspad_ana import rayonix_tbx
                    pixel_size = rayonix_tbx.get_rayonix_pixel_size(
                        job.rungroup.binning)
                    fast, slow = rayonix_tbx.get_rayonix_detector_dimensions(
                        job.rungroup.binning)
                    extra_scope = parse(
                        "geometry { detector { panel { origin = (%f, %f, %f) } } }"
                        %
                        (-job.rungroup.beamx * pixel_size, job.rungroup.beamy *
                         pixel_size, -job.rungroup.detz_parameter))
                    locator.write("rayonix.bin_size=%s\n" %
                                  job.rungroup.binning)
            locator.close()
            d['locator'] = locator_path

        if job.rungroup.two_theta_low is not None or job.rungroup.two_theta_high is not None:
            try:
                trial_params.radial_average.two_theta_low = job.rungroup.two_theta_low
                trial_params.radial_average.two_theta_high = job.rungroup.two_theta_high
            except AttributeError:
                pass  # not all dispatchers support radial averaging

        working_phil = phil_scope.format(python_object=trial_params)
        if extra_scope:
            working_phil = working_phil.fetch(extra_scope)
        diff_phil = orig_phil_scope.fetch_diff(source=working_phil)

        phil.write(diff_phil.as_str())
    phil.close()

    if config_path is not None:
        if dispatcher != 'cxi.xtc_process':
            d['untrusted_pixel_mask_path'] = None  # Don't pass a pixel mask to mod_image_dict as it will
            # will be used during dials processing directly

        config_str = "[psana]\n"
        if job.rungroup.calib_dir is not None:
            config_str += "calib-dir=%s\n" % job.rungroup.calib_dir
        modules = []
        if job.rungroup.config_str is not None:
            for line in job.rungroup.config_str.split("\n"):
                if line.startswith('['):
                    modules.append(line.lstrip('[').rstrip(']'))
        if dispatcher == 'cxi.xtc_process':
            modules.insert(0, 'my_ana_pkg.mod_radial_average')
            modules.extend(
                ['my_ana_pkg.mod_hitfind:index', 'my_ana_pkg.mod_dump:index'])
        elif image_format == 'pickle':
            modules.insert(0, 'my_ana_pkg.mod_radial_average')
            modules.extend(['my_ana_pkg.mod_image_dict'])
        if app.params.dump_shots:
            modules.insert(0, 'my_ana_pkg.mod_dump:shot')

        if len(modules) > 0:
            config_str += "modules = %s\n" % (" ".join(modules))

        if job.rungroup.config_str is not None:
            config_str += job.rungroup.config_str + "\n"

        if dispatcher == 'cxi.xtc_process' or image_format == 'pickle':
            d['address'] = d['address'].replace('.', '-').replace(
                ':', '|')  # old style address
            if dispatcher == 'cxi.xtc_process':
                template = open(
                    os.path.join(
                        libtbx.env.find_in_repositories("xfel/ui/db/cfgs"),
                        "index_all.cfg"))
            elif image_format == 'pickle':
                template = open(
                    os.path.join(
                        libtbx.env.find_in_repositories("xfel/ui/db/cfgs"),
                        "image_dict.cfg"))
            for line in template.readlines():
                config_str += line.format(**d)
            template.close()
            d['address'] = job.rungroup.detector_address

        cfg = open(config_path, 'w')
        cfg.write(config_str)
        cfg.close()

        if dispatcher != 'cxi.xtc_process':
            d['untrusted_pixel_mask_path'] = job.rungroup.untrusted_pixel_mask_path

    submit_phil_path = os.path.join(
        configs_dir, "%s_%s_r%04d_t%03d_rg%03d_submit.phil" %
        (app.params.experiment, app.params.experiment_tag, job.run.run,
         job.trial.trial, job.rungroup.id))

    submit_root = libtbx.env.find_in_repositories("xfel/ui/db/cfgs")
    if dispatcher in ['cxi.xtc_process', 'cctbx.xfel.xtc_process']:
        template = open(os.path.join(submit_root, "submit_xtc_process.phil"))
    elif dispatcher == 'cctbx.xfel.process':
        template = open(os.path.join(submit_root, "submit_xfel_process.phil"))
    else:
        test_root = os.path.join(submit_root, "submit_" + dispatcher + ".phil")
        if os.path.exists(test_root):
            template = open(test_root)
        else:
            template = open(os.path.joins(submit_root, "submit.phil"))
    phil = open(submit_phil_path, "w")

    if dispatcher == 'cxi.xtc_process':
        d['target'] = None  # any target phil will be in mod_hitfind

    for line in template.readlines():
        phil.write(line.format(**d))

    d['target'] = target_phil_path

    template.close()
    phil.close()

    from xfel.command_line.cxi_mpi_submit import Script as submit_script
    return submit_script().run([submit_phil_path])
Example #9
0
    def run(self):
        """ Process all images assigned to this thread """
        params, options = self.parser.parse_args(show_diff_phil=True)

        if params.input.experiment is None or \
           params.input.run_num is None or \
           params.input.address is None:
            raise Usage(self.usage)

        if params.format.file_format == "cbf":
            if params.format.cbf.detz_offset is None:
                raise Usage(self.usage)
        elif params.format.file_format == "pickle":
            if params.input.cfg is None:
                raise Usage(self.usage)
        else:
            raise Usage(self.usage)

        if not os.path.exists(params.output.output_dir):
            raise Sorry("Output path not found:" + params.output.output_dir)

        #Environment variable redirect for CBFLib temporary CBF_TMP_XYZ file output
        if params.format.file_format == "cbf":
            if params.output.tmp_output_dir is None:
                tmp_dir = os.path.join(params.output.output_dir, '.tmp')
            else:
                tmp_dir = os.path.join(params.output.tmp_output_dir, '.tmp')
            if not os.path.exists(tmp_dir):
                with show_mail_on_error():
                    try:
                        os.makedirs(tmp_dir)
                        # Can fail if running multiprocessed - that's OK if the folder was created
                    except OSError as e:  # In Python 2, a FileExistsError is just an OSError
                        if e.errno != errno.EEXIST:  # If this OSError is not a FileExistsError
                            raise
            os.environ['CBF_TMP_DIR'] = tmp_dir

        # Save the paramters
        self.params = params
        self.options = options

        from mpi4py import MPI
        comm = MPI.COMM_WORLD
        rank = comm.Get_rank(
        )  # each process in MPI has a unique id, 0-indexed
        size = comm.Get_size()  # size: number of processes running in this job

        # set up psana
        if params.input.cfg is not None:
            psana.setConfigFile(params.input.cfg)

        if params.input.calib_dir is not None:
            psana.setOption('psana.calib-dir', params.input.calib_dir)

        dataset_name = "exp=%s:run=%s:idx" % (params.input.experiment,
                                              params.input.run_num)
        if params.input.xtc_dir is not None:
            dataset_name = "exp=%s:run=%s:idx:dir=%s" % (
                params.input.experiment, params.input.run_num,
                params.input.xtc_dir)

        ds = psana.DataSource(dataset_name)

        if params.format.file_format == "cbf":
            src = psana.Source('DetInfo(%s)' % params.input.address)
            psana_det = psana.Detector(params.input.address, ds.env())

        # set this to sys.maxint to analyze all events
        if params.dispatch.max_events is None:
            max_events = sys.maxsize
        else:
            max_events = params.dispatch.max_events

        for run in ds.runs():
            if params.format.file_format == "cbf":
                if params.format.cbf.mode == "cspad":
                    # load a header only cspad cbf from the slac metrology
                    base_dxtbx = cspad_cbf_tbx.env_dxtbx_from_slac_metrology(
                        run, params.input.address)
                    if base_dxtbx is None:
                        raise Sorry(
                            "Couldn't load calibration file for run %d" %
                            run.run())
                elif params.format.cbf.mode == "rayonix":
                    # load a header only rayonix cbf from the input parameters
                    detector_size = rayonix_tbx.get_rayonix_detector_dimensions(
                        ds.env())
                    base_dxtbx = rayonix_tbx.get_dxtbx_from_params(
                        params.format.cbf.rayonix, detector_size)

            # list of all events
            times = run.times()
            if params.dispatch.selected_events:
                times = [
                    t for t in times
                    if cspad_tbx.evt_timestamp((t.seconds(), t.nanoseconds() /
                                                1e6)) in params.input.timestamp
                ]
            nevents = min(len(times), max_events)
            # chop the list into pieces, depending on rank.  This assigns each process
            # events such that the get every Nth event where N is the number of processes
            mytimes = [
                times[i] for i in range(nevents) if (i + rank) % size == 0
            ]

            for i in range(len(mytimes)):
                evt = run.event(mytimes[i])
                id = evt.get(psana.EventId)
                print("Event #", i, " has id:", id)

                timestamp = cspad_tbx.evt_timestamp(
                    cspad_tbx.evt_time(evt))  # human readable format
                if timestamp is None:
                    print("No timestamp, skipping shot")
                    continue

                if evt.get("skip_event") or "skip_event" in [
                        key.key() for key in evt.keys()
                ]:
                    print("Skipping event", timestamp)
                    continue

                t = timestamp
                s = t[0:4] + t[5:7] + t[8:10] + t[11:13] + t[14:16] + t[
                    17:19] + t[20:23]
                print("Processing shot", s)

                if params.format.file_format == "pickle":
                    if evt.get("skip_event"):
                        print("Skipping event", id)
                        continue
                    # the data needs to have already been processed and put into the event by psana
                    data = evt.get(params.format.pickle.out_key)
                    if data is None:
                        print("No data")
                        continue

                    # set output paths according to the templates
                    path = os.path.join(params.output.output_dir,
                                        "shot-" + s + ".pickle")

                    print("Saving", path)
                    easy_pickle.dump(path, data)

                elif params.format.file_format == "cbf":
                    if params.format.cbf.mode == "cspad":
                        # get numpy array, 32x185x388
                        data = cspad_cbf_tbx.get_psana_corrected_data(
                            psana_det,
                            evt,
                            use_default=False,
                            dark=True,
                            common_mode=None,
                            apply_gain_mask=params.format.cbf.cspad.
                            gain_mask_value is not None,
                            gain_mask_value=params.format.cbf.cspad.
                            gain_mask_value,
                            per_pixel_gain=False)

                        distance = cspad_tbx.env_distance(
                            params.input.address, run.env(),
                            params.format.cbf.detz_offset)
                    elif params.format.cbf.mode == "rayonix":
                        data = rayonix_tbx.get_data_from_psana_event(
                            evt, params.input.address)
                        distance = params.format.cbf.detz_offset

                    if distance is None:
                        print("No distance, skipping shot")
                        continue

                    if self.params.format.cbf.override_energy is None:
                        wavelength = cspad_tbx.evt_wavelength(evt)
                        if wavelength is None:
                            print("No wavelength, skipping shot")
                            continue
                    else:
                        wavelength = 12398.4187 / self.params.format.cbf.override_energy

                    # stitch together the header, data and metadata into the final dxtbx format object
                    if params.format.cbf.mode == "cspad":
                        image = cspad_cbf_tbx.format_object_from_data(
                            base_dxtbx,
                            data,
                            distance,
                            wavelength,
                            timestamp,
                            params.input.address,
                            round_to_int=False)
                    elif params.format.cbf.mode == "rayonix":
                        image = rayonix_tbx.format_object_from_data(
                            base_dxtbx, data, distance, wavelength, timestamp,
                            params.input.address)
                    path = os.path.join(params.output.output_dir,
                                        "shot-" + s + ".cbf")
                    print("Saving", path)

                    # write the file
                    import pycbf
                    image._cbf_handle.write_widefile(path.encode(), pycbf.CBF,\
                      pycbf.MIME_HEADERS|pycbf.MSG_DIGEST|pycbf.PAD_4K, 0)

            run.end()
        ds.end()
Example #10
0
def average(argv=None):
  if argv == None:
    argv = sys.argv[1:]

  try:
    from mpi4py import MPI
  except ImportError:
    raise Sorry("MPI not found")

  command_line = (libtbx.option_parser.option_parser(
    usage="""
%s [-p] -c config -x experiment -a address -r run -d detz_offset [-o outputdir] [-A averagepath] [-S stddevpath] [-M maxpath] [-n numevents] [-s skipnevents] [-v] [-m] [-b bin_size] [-X override_beam_x] [-Y override_beam_y] [-D xtc_dir] [-f]

To write image pickles use -p, otherwise the program writes CSPAD CBFs.
Writing CBFs requires the geometry to be already deployed.

Examples:
cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571

Use one process on the current node to process all the events from run 25 of
experiment cxi49812, using a detz_offset of 571.

mpirun -n 16 cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571

As above, using 16 cores on the current node.

bsub -a mympi -n 100 -o average.out -q psanaq cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 -o cxi49812

As above, using the psanaq and 100 cores, putting the log in average.out and
the output images in the folder cxi49812.
""" % libtbx.env.dispatcher_name)
                .option(None, "--as_pickle", "-p",
                        action="store_true",
                        default=False,
                        dest="as_pickle",
                        help="Write results as image pickle files instead of cbf files")
                .option(None, "--config", "-c",
                        type="string",
                        default=None,
                        dest="config",
                        metavar="PATH",
                        help="psana config file")
                .option(None, "--experiment", "-x",
                        type="string",
                        default=None,
                        dest="experiment",
                        help="experiment name (eg cxi84914)")
                .option(None, "--run", "-r",
                        type="int",
                        default=None,
                        dest="run",
                        help="run number")
                .option(None, "--address", "-a",
                        type="string",
                        default="CxiDs2.0:Cspad.0",
                        dest="address",
                        help="detector address name (eg CxiDs2.0:Cspad.0)")
                .option(None, "--detz_offset", "-d",
                        type="float",
                        default=None,
                        dest="detz_offset",
                        help="offset (in mm) from sample interaction region to back of CSPAD detector rail (CXI), or detector distance (XPP)")
                .option(None, "--outputdir", "-o",
                        type="string",
                        default=".",
                        dest="outputdir",
                        metavar="PATH",
                        help="Optional path to output directory for output files")
                .option(None, "--averagebase", "-A",
                        type="string",
                        default="{experiment!l}_avg-r{run:04d}",
                        dest="averagepath",
                        metavar="PATH",
                        help="Path to output average image without extension. String substitution allowed")
                .option(None, "--stddevbase", "-S",
                        type="string",
                        default="{experiment!l}_stddev-r{run:04d}",
                        dest="stddevpath",
                        metavar="PATH",
                        help="Path to output standard deviation image without extension. String substitution allowed")
                .option(None, "--maxbase", "-M",
                        type="string",
                        default="{experiment!l}_max-r{run:04d}",
                        dest="maxpath",
                        metavar="PATH",
                        help="Path to output maximum projection image without extension. String substitution allowed")
                .option(None, "--numevents", "-n",
                        type="int",
                        default=None,
                        dest="numevents",
                        help="Maximum number of events to process. Default: all")
                .option(None, "--skipevents", "-s",
                        type="int",
                        default=0,
                        dest="skipevents",
                        help="Number of events in the beginning of the run to skip. Default: 0")
                .option(None, "--verbose", "-v",
                        action="store_true",
                        default=False,
                        dest="verbose",
                        help="Print more information about progress")
                .option(None, "--pickle-optical-metrology", "-m",
                        action="store_true",
                        default=False,
                        dest="pickle_optical_metrology",
                        help="If writing pickle files, use the optical metrology in the experiment's calib directory")
                .option(None, "--bin_size", "-b",
                        type="int",
                        default=None,
                        dest="bin_size",
                        help="Rayonix detector bin size")
                .option(None, "--override_beam_x", "-X",
                        type="float",
                        default=None,
                        dest="override_beam_x",
                        help="Rayonix detector beam center x coordinate")
                .option(None, "--override_beam_y", "-Y",
                        type="float",
                        default=None,
                        dest="override_beam_y",
                        help="Rayonix detector beam center y coordinate")
                .option(None, "--calib_dir", "-C",
                        type="string",
                        default=None,
                        dest="calib_dir",
                        metavar="PATH",
                        help="calibration directory")
                .option(None, "--xtc_dir", "-D",
                        type="string",
                        default=None,
                        dest="xtc_dir",
                        metavar="PATH",
                        help="xtc stream directory")
                .option(None, "--use_ffb", "-f",
                        action="store_true",
                        default=False,
                        dest="use_ffb",
                        help="Use the fast feedback filesystem at LCLS. Only for the active experiment!")
                ).process(args=argv)


  if len(command_line.args) > 0 or \
      command_line.options.as_pickle is None or \
      command_line.options.experiment is None or \
      command_line.options.run is None or \
      command_line.options.address is None or \
      command_line.options.detz_offset is None or \
      command_line.options.averagepath is None or \
      command_line.options.stddevpath is None or \
      command_line.options.maxpath is None or \
      command_line.options.pickle_optical_metrology is None:
    command_line.parser.show_help()
    return

  # set this to sys.maxint to analyze all events
  if command_line.options.numevents is None:
    maxevents = sys.maxint
  else:
    maxevents = command_line.options.numevents

  comm = MPI.COMM_WORLD
  rank = comm.Get_rank()
  size = comm.Get_size()

  if command_line.options.config is not None:
    psana.setConfigFile(command_line.options.config)
  dataset_name = "exp=%s:run=%d:idx"%(command_line.options.experiment, command_line.options.run)
  if command_line.options.xtc_dir is not None:
    if command_line.options.use_ffb:
      raise Sorry("Cannot specify the xtc_dir and use SLAC's ffb system")
    dataset_name += ":dir=%s"%command_line.options.xtc_dir
  elif command_line.options.use_ffb:
    # as ffb is only at SLAC, ok to hardcode /reg/d here
    dataset_name += ":dir=/reg/d/ffb/%s/%s/xtc"%(command_line.options.experiment[0:3],command_line.options.experiment)
  ds = psana.DataSource(dataset_name)
  address = command_line.options.address
  src = psana.Source('DetInfo(%s)'%address)
  if not command_line.options.as_pickle:
    psana_det = psana.Detector(address, ds.env())

  nevent = np.array([0.])

  for run in ds.runs():
    runnumber = run.run()
    # list of all events
    if command_line.options.skipevents > 0:
      print "Skipping first %d events"%command_line.options.skipevents

    times = run.times()[command_line.options.skipevents:]
    nevents = min(len(times),maxevents)
    # chop the list into pieces, depending on rank.  This assigns each process
    # events such that the get every Nth event where N is the number of processes
    mytimes = [times[i] for i in xrange(nevents) if (i+rank)%size == 0]
    for i in xrange(len(mytimes)):
      if i%10==0: print 'Rank',rank,'processing event',rank*len(mytimes)+i,', ',i,'of',len(mytimes)
      evt = run.event(mytimes[i])
      #print "Event #",rank*mylength+i," has id:",evt.get(EventId)
      if 'Rayonix' in command_line.options.address:
        data = evt.get(Camera.FrameV1,src)
        if data is None:
          print "No data"
          continue
        data=data.data16().astype(np.float64)
      elif command_line.options.as_pickle:
        data = evt.get(psana.ndarray_float64_3, src, 'image0')
      else:
        # get numpy array, 32x185x388
        data = psana_det.calib(evt) # applies psana's complex run-dependent calibrations
      if data is None:
        print "No data"
        continue

      d = cspad_tbx.env_distance(address, run.env(), command_line.options.detz_offset)
      if d is None:
        print "No distance, skipping shot"
        continue
      if 'distance' in locals():
        distance += d
      else:
        distance = np.array([float(d)])

      w = cspad_tbx.evt_wavelength(evt)
      if w is None:
        print "No wavelength, skipping shot"
        continue
      if 'wavelength' in locals():
        wavelength += w
      else:
        wavelength = np.array([w])

      t = cspad_tbx.evt_time(evt)
      if t is None:
        print "No timestamp, skipping shot"
        continue
      if 'timestamp' in locals():
        timestamp += t[0] + (t[1]/1000)
      else:
        timestamp = np.array([t[0] + (t[1]/1000)])

      if 'sum' in locals():
        sum+=data
      else:
        sum=np.array(data, copy=True)
      if 'sumsq' in locals():
        sumsq+=data*data
      else:
        sumsq=data*data
      if 'maximum' in locals():
        maximum=np.maximum(maximum,data)
      else:
        maximum=np.array(data, copy=True)

      nevent += 1

  #sum the images across mpi cores
  if size > 1:
    print "Synchronizing rank", rank
  totevent = np.zeros(nevent.shape)
  comm.Reduce(nevent,totevent)

  if rank == 0 and totevent[0] == 0:
    raise Sorry("No events found in the run")

  sumall = np.zeros(sum.shape).astype(sum.dtype)
  comm.Reduce(sum,sumall)

  sumsqall = np.zeros(sumsq.shape).astype(sumsq.dtype)
  comm.Reduce(sumsq,sumsqall)

  maxall = np.zeros(maximum.shape).astype(maximum.dtype)
  comm.Reduce(maximum,maxall, op=MPI.MAX)

  waveall = np.zeros(wavelength.shape).astype(wavelength.dtype)
  comm.Reduce(wavelength,waveall)

  distall = np.zeros(distance.shape).astype(distance.dtype)
  comm.Reduce(distance,distall)

  timeall = np.zeros(timestamp.shape).astype(timestamp.dtype)
  comm.Reduce(timestamp,timeall)

  if rank==0:
    if size > 1:
      print "Synchronized"

    # Accumulating floating-point numbers introduces errors,
    # which may cause negative variances.  Since a two-pass
    # approach is unacceptable, the standard deviation is
    # clamped at zero.
    mean = sumall / float(totevent[0])
    variance = (sumsqall / float(totevent[0])) - (mean**2)
    variance[variance < 0] = 0
    stddev = np.sqrt(variance)

    wavelength = waveall[0] / totevent[0]
    distance = distall[0] / totevent[0]
    pixel_size = cspad_tbx.pixel_size
    saturated_value = cspad_tbx.cspad_saturated_value
    timestamp = timeall[0] / totevent[0]
    timestamp = (int(timestamp), timestamp % int(timestamp) * 1000)
    timestamp = cspad_tbx.evt_timestamp(timestamp)


    if command_line.options.as_pickle:
      extension = ".pickle"
    else:
      extension = ".cbf"

    dest_paths = [cspad_tbx.pathsubst(command_line.options.averagepath + extension, evt, ds.env()),
                  cspad_tbx.pathsubst(command_line.options.stddevpath  + extension, evt, ds.env()),
                  cspad_tbx.pathsubst(command_line.options.maxpath     + extension, evt, ds.env())]
    dest_paths = [os.path.join(command_line.options.outputdir, path) for path in dest_paths]
    if 'Rayonix' in command_line.options.address:
      from xfel.cxi.cspad_ana import rayonix_tbx
      pixel_size = rayonix_tbx.get_rayonix_pixel_size(command_line.options.bin_size)
      beam_center = [command_line.options.override_beam_x,command_line.options.override_beam_y]
      detector_dimensions = rayonix_tbx.get_rayonix_detector_dimensions(command_line.options.bin_size)
      active_areas = flex.int([0,0,detector_dimensions[0],detector_dimensions[1]])
      split_address = cspad_tbx.address_split(address)
      old_style_address = split_address[0] + "-" + split_address[1] + "|" + split_address[2] + "-" + split_address[3]
      for data, path in zip([mean, stddev, maxall], dest_paths):
        print "Saving", path
        d = cspad_tbx.dpack(
            active_areas=active_areas,
            address=old_style_address,
            beam_center_x=pixel_size * beam_center[0],
            beam_center_y=pixel_size * beam_center[1],
            data=flex.double(data),
            distance=distance,
            pixel_size=pixel_size,
            saturated_value=rayonix_tbx.rayonix_saturated_value,
            timestamp=timestamp,
            wavelength=wavelength)
        easy_pickle.dump(path, d)
    elif command_line.options.as_pickle:
      split_address = cspad_tbx.address_split(address)
      old_style_address = split_address[0] + "-" + split_address[1] + "|" + split_address[2] + "-" + split_address[3]

      xpp = 'xpp' in address.lower()
      if xpp:
        evt_time = cspad_tbx.evt_time(evt) # tuple of seconds, milliseconds
        timestamp = cspad_tbx.evt_timestamp(evt_time) # human readable format
        from xfel.detector_formats import detector_format_version, reverse_timestamp
        from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas
        version_lookup = detector_format_version(old_style_address, reverse_timestamp(timestamp)[0])
        assert version_lookup is not None
        active_areas = xpp_active_areas[version_lookup]['active_areas']
        beam_center = [1765 // 2, 1765 // 2]
      else:
        if command_line.options.calib_dir is not None:
          metro_path = command_line.options.calib_dir
        elif command_line.options.pickle_optical_metrology:
          from xfel.cftbx.detector.cspad_cbf_tbx import get_calib_file_path
          metro_path = get_calib_file_path(run.env(), address, run)
        else:
          metro_path = libtbx.env.find_in_repositories("xfel/metrology/CSPad/run4/CxiDs1.0_Cspad.0")
        sections = parse_calib.calib2sections(metro_path)
        beam_center, active_areas = cspad_tbx.cbcaa(
          cspad_tbx.getConfig(address, ds.env()), sections)

      class fake_quad(object):
        def __init__(self, q, d):
          self.q = q
          self.d = d

        def quad(self):
          return self.q

        def data(self):
          return self.d

      if xpp:
        quads = [fake_quad(i, mean[i*8:(i+1)*8,:,:]) for i in xrange(4)]
        mean = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads = quads)
        mean = flex.double(mean.astype(np.float64))

        quads = [fake_quad(i, stddev[i*8:(i+1)*8,:,:]) for i in xrange(4)]
        stddev = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads = quads)
        stddev = flex.double(stddev.astype(np.float64))

        quads = [fake_quad(i, maxall[i*8:(i+1)*8,:,:]) for i in xrange(4)]
        maxall = cspad_tbx.image_xpp(old_style_address, None, ds.env(), active_areas, quads = quads)
        maxall = flex.double(maxall.astype(np.float64))
      else:
        quads = [fake_quad(i, mean[i*8:(i+1)*8,:,:]) for i in xrange(4)]
        mean = cspad_tbx.CsPadDetector(
          address, evt, ds.env(), sections, quads=quads)
        mean = flex.double(mean.astype(np.float64))

        quads = [fake_quad(i, stddev[i*8:(i+1)*8,:,:]) for i in xrange(4)]
        stddev = cspad_tbx.CsPadDetector(
          address, evt, ds.env(), sections, quads=quads)
        stddev = flex.double(stddev.astype(np.float64))

        quads = [fake_quad(i, maxall[i*8:(i+1)*8,:,:]) for i in xrange(4)]
        maxall = cspad_tbx.CsPadDetector(
          address, evt, ds.env(), sections, quads=quads)
        maxall = flex.double(maxall.astype(np.float64))

      for data, path in zip([mean, stddev, maxall], dest_paths):
        print "Saving", path

        d = cspad_tbx.dpack(
          active_areas=active_areas,
          address=old_style_address,
          beam_center_x=pixel_size * beam_center[0],
          beam_center_y=pixel_size * beam_center[1],
          data=data,
          distance=distance,
          pixel_size=pixel_size,
          saturated_value=saturated_value,
          timestamp=timestamp,
          wavelength=wavelength)

        easy_pickle.dump(path, d)
    else:
      # load a header only cspad cbf from the slac metrology
      from xfel.cftbx.detector import cspad_cbf_tbx
      import pycbf
      base_dxtbx = cspad_cbf_tbx.env_dxtbx_from_slac_metrology(run, address)
      if base_dxtbx is None:
        raise Sorry("Couldn't load calibration file for run %d"%run.run())

      for data, path in zip([mean, stddev, maxall], dest_paths):
        print "Saving", path

        cspad_img = cspad_cbf_tbx.format_object_from_data(base_dxtbx, data, distance, wavelength, timestamp, address)
        cspad_img._cbf_handle.write_widefile(path, pycbf.CBF,\
          pycbf.MIME_HEADERS|pycbf.MSG_DIGEST|pycbf.PAD_4K, 0)
Example #11
0
def average(argv=None):
    if argv == None:
        argv = sys.argv[1:]

    try:
        from mpi4py import MPI
    except ImportError:
        raise Sorry("MPI not found")

    command_line = (libtbx.option_parser.option_parser(usage="""
%s [-p] -c config -x experiment -a address -r run -d detz_offset [-o outputdir] [-A averagepath] [-S stddevpath] [-M maxpath] [-n numevents] [-s skipnevents] [-v] [-m] [-b bin_size] [-X override_beam_x] [-Y override_beam_y] [-D xtc_dir] [-f] [-g gain_mask_value] [--min] [--minpath minpath]

To write image pickles use -p, otherwise the program writes CSPAD CBFs.
Writing CBFs requires the geometry to be already deployed.

Examples:
cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571

Use one process on the current node to process all the events from run 25 of
experiment cxi49812, using a detz_offset of 571.

mpirun -n 16 cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571

As above, using 16 cores on the current node.

bsub -a mympi -n 100 -o average.out -q psanaq cxi.mpi_average -c cxi49812/average.cfg -x cxi49812 -a CxiDs1.0:Cspad.0 -r 25 -d 571 -o cxi49812

As above, using the psanaq and 100 cores, putting the log in average.out and
the output images in the folder cxi49812.
""" % libtbx.env.dispatcher_name).option(
        None,
        "--as_pickle",
        "-p",
        action="store_true",
        default=False,
        dest="as_pickle",
        help="Write results as image pickle files instead of cbf files"
    ).option(
        None,
        "--raw_data",
        "-R",
        action="store_true",
        default=False,
        dest="raw_data",
        help=
        "Disable psana corrections such as dark pedestal subtraction or common mode (cbf only)"
    ).option(
        None,
        "--background_pickle",
        "-B",
        default=None,
        dest="background_pickle",
        help=""
    ).option(
        None,
        "--config",
        "-c",
        type="string",
        default=None,
        dest="config",
        metavar="PATH",
        help="psana config file"
    ).option(
        None,
        "--experiment",
        "-x",
        type="string",
        default=None,
        dest="experiment",
        help="experiment name (eg cxi84914)"
    ).option(
        None,
        "--run",
        "-r",
        type="int",
        default=None,
        dest="run",
        help="run number"
    ).option(
        None,
        "--address",
        "-a",
        type="string",
        default="CxiDs2.0:Cspad.0",
        dest="address",
        help="detector address name (eg CxiDs2.0:Cspad.0)"
    ).option(
        None,
        "--detz_offset",
        "-d",
        type="float",
        default=None,
        dest="detz_offset",
        help=
        "offset (in mm) from sample interaction region to back of CSPAD detector rail (CXI), or detector distance (XPP)"
    ).option(
        None,
        "--outputdir",
        "-o",
        type="string",
        default=".",
        dest="outputdir",
        metavar="PATH",
        help="Optional path to output directory for output files"
    ).option(
        None,
        "--averagebase",
        "-A",
        type="string",
        default="{experiment!l}_avg-r{run:04d}",
        dest="averagepath",
        metavar="PATH",
        help=
        "Path to output average image without extension. String substitution allowed"
    ).option(
        None,
        "--stddevbase",
        "-S",
        type="string",
        default="{experiment!l}_stddev-r{run:04d}",
        dest="stddevpath",
        metavar="PATH",
        help=
        "Path to output standard deviation image without extension. String substitution allowed"
    ).option(
        None,
        "--maxbase",
        "-M",
        type="string",
        default="{experiment!l}_max-r{run:04d}",
        dest="maxpath",
        metavar="PATH",
        help=
        "Path to output maximum projection image without extension. String substitution allowed"
    ).option(
        None,
        "--numevents",
        "-n",
        type="int",
        default=None,
        dest="numevents",
        help="Maximum number of events to process. Default: all"
    ).option(
        None,
        "--skipevents",
        "-s",
        type="int",
        default=0,
        dest="skipevents",
        help="Number of events in the beginning of the run to skip. Default: 0"
    ).option(
        None,
        "--verbose",
        "-v",
        action="store_true",
        default=False,
        dest="verbose",
        help="Print more information about progress"
    ).option(
        None,
        "--pickle-optical-metrology",
        "-m",
        action="store_true",
        default=False,
        dest="pickle_optical_metrology",
        help=
        "If writing pickle files, use the optical metrology in the experiment's calib directory"
    ).option(
        None,
        "--bin_size",
        "-b",
        type="int",
        default=None,
        dest="bin_size",
        help="Rayonix detector bin size"
    ).option(
        None,
        "--override_beam_x",
        "-X",
        type="float",
        default=None,
        dest="override_beam_x",
        help="Rayonix detector beam center x coordinate"
    ).option(
        None,
        "--override_beam_y",
        "-Y",
        type="float",
        default=None,
        dest="override_beam_y",
        help="Rayonix detector beam center y coordinate"
    ).option(
        None,
        "--calib_dir",
        "-C",
        type="string",
        default=None,
        dest="calib_dir",
        metavar="PATH",
        help="calibration directory"
    ).option(
        None,
        "--pickle_calib_dir",
        "-P",
        type="string",
        default=None,
        dest="pickle_calib_dir",
        metavar="PATH",
        help=
        "pickle calibration directory specification. Replaces --calib_dir functionality."
    ).option(
        None,
        "--xtc_dir",
        "-D",
        type="string",
        default=None,
        dest="xtc_dir",
        metavar="PATH",
        help="xtc stream directory"
    ).option(
        None,
        "--use_ffb",
        "-f",
        action="store_true",
        default=False,
        dest="use_ffb",
        help=
        "Use the fast feedback filesystem at LCLS. Only for the active experiment!"
    ).option(
        None,
        "--gain_mask_value",
        "-g",
        type="float",
        default=None,
        dest="gain_mask_value",
        help=
        "Ratio between low and high gain pixels, if CSPAD in mixed-gain mode. Only used in CBF averaging mode."
    ).option(
        None,
        "--min",
        None,
        action="store_true",
        default=False,
        dest="do_minimum_projection",
        help="Output a minimum projection"
    ).option(
        None,
        "--minpath",
        None,
        type="string",
        default="{experiment!l}_min-r{run:04d}",
        dest="minpath",
        metavar="PATH",
        help=
        "Path to output minimum image without extension. String substitution allowed"
    )).process(args=argv)


    if len(command_line.args) > 0 or \
        command_line.options.as_pickle is None or \
        command_line.options.experiment is None or \
        command_line.options.run is None or \
        command_line.options.address is None or \
        command_line.options.detz_offset is None or \
        command_line.options.averagepath is None or \
        command_line.options.stddevpath is None or \
        command_line.options.maxpath is None or \
        command_line.options.pickle_optical_metrology is None:
        command_line.parser.show_help()
        return

    # set this to sys.maxint to analyze all events
    if command_line.options.numevents is None:
        maxevents = sys.maxint
    else:
        maxevents = command_line.options.numevents

    comm = MPI.COMM_WORLD
    rank = comm.Get_rank()
    size = comm.Get_size()

    if command_line.options.config is not None:
        psana.setConfigFile(command_line.options.config)
    dataset_name = "exp=%s:run=%d:idx" % (command_line.options.experiment,
                                          command_line.options.run)
    if command_line.options.xtc_dir is not None:
        if command_line.options.use_ffb:
            raise Sorry("Cannot specify the xtc_dir and use SLAC's ffb system")
        dataset_name += ":dir=%s" % command_line.options.xtc_dir
    elif command_line.options.use_ffb:
        # as ffb is only at SLAC, ok to hardcode /reg/d here
        dataset_name += ":dir=/reg/d/ffb/%s/%s/xtc" % (
            command_line.options.experiment[0:3],
            command_line.options.experiment)
    if command_line.options.calib_dir is not None:
        psana.setOption('psana.calib-dir', command_line.options.calib_dir)
    ds = psana.DataSource(dataset_name)
    address = command_line.options.address
    src = psana.Source('DetInfo(%s)' % address)
    nevent = np.array([0.])

    if command_line.options.background_pickle is not None:
        background = easy_pickle.load(
            command_line.options.background_pickle)['DATA'].as_numpy_array()

    for run in ds.runs():
        runnumber = run.run()

        if not command_line.options.as_pickle:
            psana_det = psana.Detector(address, ds.env())

        # list of all events
        if command_line.options.skipevents > 0:
            print "Skipping first %d events" % command_line.options.skipevents
        elif "Rayonix" in command_line.options.address:
            print "Skipping first image in the Rayonix detector"  # Shuttering issue
            command_line.options.skipevents = 1

        times = run.times()[command_line.options.skipevents:]
        nevents = min(len(times), maxevents)
        # chop the list into pieces, depending on rank.  This assigns each process
        # events such that the get every Nth event where N is the number of processes
        mytimes = [times[i] for i in xrange(nevents) if (i + rank) % size == 0]
        for i in xrange(len(mytimes)):
            if i % 10 == 0:
                print 'Rank', rank, 'processing event', rank * len(
                    mytimes) + i, ', ', i, 'of', len(mytimes)
            evt = run.event(mytimes[i])
            #print "Event #",rank*mylength+i," has id:",evt.get(EventId)
            if 'Rayonix' in command_line.options.address or 'FeeHxSpectrometer' in command_line.options.address or 'XrayTransportDiagnostic' in command_line.options.address:
                data = evt.get(psana.Camera.FrameV1, src)
                if data is None:
                    print "No data"
                    continue
                data = data.data16().astype(np.float64)
            elif command_line.options.as_pickle:
                data = evt.get(psana.ndarray_float64_3, src, 'image0')
            else:
                # get numpy array, 32x185x388
                from xfel.cftbx.detector.cspad_cbf_tbx import get_psana_corrected_data
                if command_line.options.raw_data:
                    data = get_psana_corrected_data(psana_det,
                                                    evt,
                                                    use_default=False,
                                                    dark=False,
                                                    common_mode=None,
                                                    apply_gain_mask=False,
                                                    per_pixel_gain=False)
                else:
                    if command_line.options.gain_mask_value is None:
                        data = get_psana_corrected_data(psana_det,
                                                        evt,
                                                        use_default=True)
                    else:
                        data = get_psana_corrected_data(
                            psana_det,
                            evt,
                            use_default=False,
                            dark=True,
                            common_mode=None,
                            apply_gain_mask=True,
                            gain_mask_value=command_line.options.
                            gain_mask_value,
                            per_pixel_gain=False)

            if data is None:
                print "No data"
                continue

            if command_line.options.background_pickle is not None:
                data -= background

            if 'FeeHxSpectrometer' in command_line.options.address or 'XrayTransportDiagnostic' in command_line.options.address:
                distance = np.array([0.0])
                wavelength = np.array([1.0])
            else:
                d = cspad_tbx.env_distance(address, run.env(),
                                           command_line.options.detz_offset)
                if d is None:
                    print "No distance, using distance", command_line.options.detz_offset
                    assert command_line.options.detz_offset is not None
                    if 'distance' not in locals():
                        distance = np.array([command_line.options.detz_offset])
                    else:
                        distance += command_line.options.detz_offset
                else:
                    if 'distance' in locals():
                        distance += d
                    else:
                        distance = np.array([float(d)])

                w = cspad_tbx.evt_wavelength(evt)
                if w is None:
                    print "No wavelength"
                    if 'wavelength' not in locals():
                        wavelength = np.array([1.0])
                else:
                    if 'wavelength' in locals():
                        wavelength += w
                    else:
                        wavelength = np.array([w])

            t = cspad_tbx.evt_time(evt)
            if t is None:
                print "No timestamp, skipping shot"
                continue
            if 'timestamp' in locals():
                timestamp += t[0] + (t[1] / 1000)
            else:
                timestamp = np.array([t[0] + (t[1] / 1000)])

            if 'sum' in locals():
                sum += data
            else:
                sum = np.array(data, copy=True)
            if 'sumsq' in locals():
                sumsq += data * data
            else:
                sumsq = data * data
            if 'maximum' in locals():
                maximum = np.maximum(maximum, data)
            else:
                maximum = np.array(data, copy=True)

            if command_line.options.do_minimum_projection:
                if 'minimum' in locals():
                    minimum = np.minimum(minimum, data)
                else:
                    minimum = np.array(data, copy=True)

            nevent += 1

    #sum the images across mpi cores
    if size > 1:
        print "Synchronizing rank", rank
    totevent = np.zeros(nevent.shape)
    comm.Reduce(nevent, totevent)

    if rank == 0 and totevent[0] == 0:
        raise Sorry("No events found in the run")

    sumall = np.zeros(sum.shape).astype(sum.dtype)
    comm.Reduce(sum, sumall)

    sumsqall = np.zeros(sumsq.shape).astype(sumsq.dtype)
    comm.Reduce(sumsq, sumsqall)

    maxall = np.zeros(maximum.shape).astype(maximum.dtype)
    comm.Reduce(maximum, maxall, op=MPI.MAX)

    if command_line.options.do_minimum_projection:
        minall = np.zeros(maximum.shape).astype(minimum.dtype)
        comm.Reduce(minimum, minall, op=MPI.MIN)

    waveall = np.zeros(wavelength.shape).astype(wavelength.dtype)
    comm.Reduce(wavelength, waveall)

    distall = np.zeros(distance.shape).astype(distance.dtype)
    comm.Reduce(distance, distall)

    timeall = np.zeros(timestamp.shape).astype(timestamp.dtype)
    comm.Reduce(timestamp, timeall)

    if rank == 0:
        if size > 1:
            print "Synchronized"

        # Accumulating floating-point numbers introduces errors,
        # which may cause negative variances.  Since a two-pass
        # approach is unacceptable, the standard deviation is
        # clamped at zero.
        mean = sumall / float(totevent[0])
        variance = (sumsqall / float(totevent[0])) - (mean**2)
        variance[variance < 0] = 0
        stddev = np.sqrt(variance)

        wavelength = waveall[0] / totevent[0]
        distance = distall[0] / totevent[0]
        pixel_size = cspad_tbx.pixel_size
        saturated_value = cspad_tbx.cspad_saturated_value
        timestamp = timeall[0] / totevent[0]
        timestamp = (int(timestamp), timestamp % int(timestamp) * 1000)
        timestamp = cspad_tbx.evt_timestamp(timestamp)

        if command_line.options.as_pickle:
            extension = ".pickle"
        else:
            extension = ".cbf"

        dest_paths = [
            cspad_tbx.pathsubst(command_line.options.averagepath + extension,
                                evt, ds.env()),
            cspad_tbx.pathsubst(command_line.options.stddevpath + extension,
                                evt, ds.env()),
            cspad_tbx.pathsubst(command_line.options.maxpath + extension, evt,
                                ds.env())
        ]
        if command_line.options.do_minimum_projection:
            dest_paths.append(
                cspad_tbx.pathsubst(command_line.options.minpath + extension,
                                    evt, ds.env()))

        dest_paths = [
            os.path.join(command_line.options.outputdir, path)
            for path in dest_paths
        ]
        if 'Rayonix' in command_line.options.address:
            all_data = [mean, stddev, maxall]
            if command_line.options.do_minimum_projection:
                all_data.append(minall)
            from xfel.cxi.cspad_ana import rayonix_tbx
            pixel_size = rayonix_tbx.get_rayonix_pixel_size(
                command_line.options.bin_size)
            beam_center = [
                command_line.options.override_beam_x,
                command_line.options.override_beam_y
            ]
            detector_dimensions = rayonix_tbx.get_rayonix_detector_dimensions(
                command_line.options.bin_size)
            active_areas = flex.int(
                [0, 0, detector_dimensions[0], detector_dimensions[1]])
            split_address = cspad_tbx.address_split(address)
            old_style_address = split_address[0] + "-" + split_address[
                1] + "|" + split_address[2] + "-" + split_address[3]
            for data, path in zip(all_data, dest_paths):
                print "Saving", path
                d = cspad_tbx.dpack(
                    active_areas=active_areas,
                    address=old_style_address,
                    beam_center_x=pixel_size * beam_center[0],
                    beam_center_y=pixel_size * beam_center[1],
                    data=flex.double(data),
                    distance=distance,
                    pixel_size=pixel_size,
                    saturated_value=rayonix_tbx.rayonix_saturated_value,
                    timestamp=timestamp,
                    wavelength=wavelength)
                easy_pickle.dump(path, d)
        elif 'FeeHxSpectrometer' in command_line.options.address or 'XrayTransportDiagnostic' in command_line.options.address:
            all_data = [mean, stddev, maxall]
            split_address = cspad_tbx.address_split(address)
            old_style_address = split_address[0] + "-" + split_address[
                1] + "|" + split_address[2] + "-" + split_address[3]
            if command_line.options.do_minimum_projection:
                all_data.append(minall)
            for data, path in zip(all_data, dest_paths):
                d = cspad_tbx.dpack(address=old_style_address,
                                    data=flex.double(data),
                                    distance=distance,
                                    pixel_size=0.1,
                                    timestamp=timestamp,
                                    wavelength=wavelength)
                print "Saving", path
                easy_pickle.dump(path, d)
        elif command_line.options.as_pickle:
            split_address = cspad_tbx.address_split(address)
            old_style_address = split_address[0] + "-" + split_address[
                1] + "|" + split_address[2] + "-" + split_address[3]

            xpp = 'xpp' in address.lower()
            if xpp:
                evt_time = cspad_tbx.evt_time(
                    evt)  # tuple of seconds, milliseconds
                timestamp = cspad_tbx.evt_timestamp(
                    evt_time)  # human readable format
                from iotbx.detectors.cspad_detector_formats import detector_format_version, reverse_timestamp
                from xfel.cxi.cspad_ana.cspad_tbx import xpp_active_areas
                version_lookup = detector_format_version(
                    old_style_address,
                    reverse_timestamp(timestamp)[0])
                assert version_lookup is not None
                active_areas = xpp_active_areas[version_lookup]['active_areas']
                beam_center = [1765 // 2, 1765 // 2]
            else:
                if command_line.options.pickle_calib_dir is not None:
                    metro_path = command_line.options.pickle_calib_dir
                elif command_line.options.pickle_optical_metrology:
                    from xfel.cftbx.detector.cspad_cbf_tbx import get_calib_file_path
                    metro_path = get_calib_file_path(run.env(), address, run)
                else:
                    metro_path = libtbx.env.find_in_repositories(
                        "xfel/metrology/CSPad/run4/CxiDs1.0_Cspad.0")
                sections = parse_calib.calib2sections(metro_path)
                beam_center, active_areas = cspad_tbx.cbcaa(
                    cspad_tbx.getConfig(address, ds.env()), sections)

            class fake_quad(object):
                def __init__(self, q, d):
                    self.q = q
                    self.d = d

                def quad(self):
                    return self.q

                def data(self):
                    return self.d

            if xpp:
                quads = [
                    fake_quad(i, mean[i * 8:(i + 1) * 8, :, :])
                    for i in xrange(4)
                ]
                mean = cspad_tbx.image_xpp(old_style_address,
                                           None,
                                           ds.env(),
                                           active_areas,
                                           quads=quads)
                mean = flex.double(mean.astype(np.float64))

                quads = [
                    fake_quad(i, stddev[i * 8:(i + 1) * 8, :, :])
                    for i in xrange(4)
                ]
                stddev = cspad_tbx.image_xpp(old_style_address,
                                             None,
                                             ds.env(),
                                             active_areas,
                                             quads=quads)
                stddev = flex.double(stddev.astype(np.float64))

                quads = [
                    fake_quad(i, maxall[i * 8:(i + 1) * 8, :, :])
                    for i in xrange(4)
                ]
                maxall = cspad_tbx.image_xpp(old_style_address,
                                             None,
                                             ds.env(),
                                             active_areas,
                                             quads=quads)
                maxall = flex.double(maxall.astype(np.float64))

                if command_line.options.do_minimum_projection:
                    quads = [
                        fake_quad(i, minall[i * 8:(i + 1) * 8, :, :])
                        for i in xrange(4)
                    ]
                    minall = cspad_tbx.image_xpp(old_style_address,
                                                 None,
                                                 ds.env(),
                                                 active_areas,
                                                 quads=quads)
                    minall = flex.double(minall.astype(np.float64))
            else:
                quads = [
                    fake_quad(i, mean[i * 8:(i + 1) * 8, :, :])
                    for i in xrange(4)
                ]
                mean = cspad_tbx.CsPadDetector(address,
                                               evt,
                                               ds.env(),
                                               sections,
                                               quads=quads)
                mean = flex.double(mean.astype(np.float64))

                quads = [
                    fake_quad(i, stddev[i * 8:(i + 1) * 8, :, :])
                    for i in xrange(4)
                ]
                stddev = cspad_tbx.CsPadDetector(address,
                                                 evt,
                                                 ds.env(),
                                                 sections,
                                                 quads=quads)
                stddev = flex.double(stddev.astype(np.float64))

                quads = [
                    fake_quad(i, maxall[i * 8:(i + 1) * 8, :, :])
                    for i in xrange(4)
                ]
                maxall = cspad_tbx.CsPadDetector(address,
                                                 evt,
                                                 ds.env(),
                                                 sections,
                                                 quads=quads)
                maxall = flex.double(maxall.astype(np.float64))

                if command_line.options.do_minimum_projection:
                    quads = [
                        fake_quad(i, minall[i * 8:(i + 1) * 8, :, :])
                        for i in xrange(4)
                    ]
                    minall = cspad_tbx.CsPadDetector(address,
                                                     evt,
                                                     ds.env(),
                                                     sections,
                                                     quads=quads)
                    minall = flex.double(minall.astype(np.float64))

            all_data = [mean, stddev, maxall]
            if command_line.options.do_minimum_projection:
                all_data.append(minall)

            for data, path in zip(all_data, dest_paths):
                print "Saving", path

                d = cspad_tbx.dpack(active_areas=active_areas,
                                    address=old_style_address,
                                    beam_center_x=pixel_size * beam_center[0],
                                    beam_center_y=pixel_size * beam_center[1],
                                    data=data,
                                    distance=distance,
                                    pixel_size=pixel_size,
                                    saturated_value=saturated_value,
                                    timestamp=timestamp,
                                    wavelength=wavelength)

                easy_pickle.dump(path, d)
        else:
            # load a header only cspad cbf from the slac metrology
            from xfel.cftbx.detector import cspad_cbf_tbx
            import pycbf
            base_dxtbx = cspad_cbf_tbx.env_dxtbx_from_slac_metrology(
                run, address)
            if base_dxtbx is None:
                raise Sorry("Couldn't load calibration file for run %d" %
                            run.run())

            all_data = [mean, stddev, maxall]
            if command_line.options.do_minimum_projection:
                all_data.append(minall)

            for data, path in zip(all_data, dest_paths):
                print "Saving", path
                cspad_img = cspad_cbf_tbx.format_object_from_data(
                    base_dxtbx,
                    data,
                    distance,
                    wavelength,
                    timestamp,
                    address,
                    round_to_int=False)
                cspad_img._cbf_handle.write_widefile(path, pycbf.CBF,\
                  pycbf.MIME_HEADERS|pycbf.MSG_DIGEST|pycbf.PAD_4K, 0)