Example #1
0
def get_max_cl(Re, r):
    """
    Analyze airfoil at a fixed Re,
    changing aoa from 10 to 15 by 0.1
    and returns cl, cd, aoa that makes maximum cl
    """
    xf = XFoil()
    if r <= 0.175:
        xf.airfoil = naca6409
    else:
        xf.airfoil = naca2412
    xf.Re = Re
    xf.Re = Re
    xf.max_iter = 200
    xf.n_crit = 9.00
    xf.xtr = [1.00, 1.00]
    xf.M = 0
    a_seq, cl_seq, cd_seq, cm_seq, cp_seq = xf.aseq(10, 15, 0.1)
    # ignore nan by making it 0
    cl_seq = np.nan_to_num(cl_seq)
    # find the maximum cl
    cl_maxi = np.max(cl_seq)
    # index of the maximum cl
    idx = np.argmax(cl_seq)
    return round(cl_maxi, 2), round(a_seq[idx], 2), round(cd_seq[idx], 2)
Example #2
0
def hello():
    x = request.args.get('x')
    y = request.args.get('y')
    Re = float(request.args.get('Re'))
    M = float(request.args.get('M'))
    Alpha = float(request.args.get('Alpha'))
    x = x.split()
    y = y.split()
    ctrlX = [float(ele) for ele in x]
    ctrlY = [float(ele) for ele in y]
    bezierX, bezierY = airfoil(ctrlX, ctrlY, 16)

    xf = XFoil()
    xf.Re = Re
    xf.M = 0
    xf.max_iter = 100
    xf.airfoil = Airfoil(np.array(bezierX), np.array(bezierY))
    aero = xf.a(Alpha)
    xcp, cp = xf.get_cp_distribution()
    y = savgol_filter(cp, 5, 2)
    for i in range(30):
        y = savgol_filter(y, 5, 2)
    LD = aero[0] / aero[1]
    vol = PolyArea(bezierX, bezierY)

    print(len(xcp))

    return jsonify(result=str(round(aero[0], 3)) + " " +
                   str(round(aero[1], 3)) + " " + str(round(aero[2], 3)) +
                   " " + str(round(LD, 2)) + " " + str(round(vol, 3)),
                   xcp=xcp.tolist(),
                   cp=y.tolist())
Example #3
0
def get_cl(coord, xf=None, angle=5):
  if xf is None:
    xf = XFoil()
    xf.print = False

  xf.Re = 3e6
  xf.max_iter = 100
  datax, datay = coord.reshape(2, -1)
  xf.airfoil = Airfoil(x=datax, y=datay)
  c = xf.a(angle)
  cl= c[0]
  return cl
Example #4
0
    def evaluate(self, individual):
        ratios = self.decoder(individual, self.code_division)
        datlist_list = [fc.read_datfile(file) for file in self.datfiles]
        datlist_shaped_list = [
            fc.shape_dat(datlist) for datlist in datlist_list
        ]
        newdat = fc.interpolate_dat(datlist_shaped_list, ratios)

        foil_para = fc.get_foil_para(newdat)

        datx = np.array([ax[0] for ax in newdat])
        daty = np.array([ax[1] for ax in newdat])
        newfoil = Airfoil(x=datx, y=daty)

        mt, mta, mc, mca, s = foil_para

        penalty = 0
        for g, p in zip(self.gs, self.penalties):
            if (not g):
                penalty += p

        xf = XFoil()
        xf.airfoil = newfoil
        xf.Re = self.re
        xf.max_iter = 60

        print(self.assigns, self.datfiles)
        scope = locals()
        exec(self.assigns, scope)
        #----------------------------------
        #目的値
        #----------------------------------
        try:
            obj1, obj2, obj3 = [eval(o) for o in self.Os]
        except IndexError as e:
            obj1, obj2, obj3 = [1.0] * self.NOBJ
            traceback.print_exc()
        except SyntaxError as e:
            raise ValueError("invalid objection")

        if (np.isnan(obj1) or obj1 > 1):
            obj1 = 1
        if (np.isnan(obj2) or obj2 > 1):
            obj2 = 1
        if (np.isnan(obj3) or obj3 > 1):
            obj3 = 1

        obj1 += penalty
        obj2 += penalty
        obj3 += penalty

        return [obj1, obj2, obj3]
Example #5
0
def getCoefficients(naca,
                    reynolds=1e6,
                    iterations=20,
                    angle=10,
                    angle_step=.5):
    xf = XFoil()
    xf.naca(f"{naca:04d}")
    xf.Re = reynolds
    xf.max_iter = 20
    a, cl, cd, cm, cp = xf.aseq(0, angle, .5)
    ratio = cl / cd
    max_idx = np.nanargmax(ratio)
    return (ratio[max_idx], a[max_idx]), a, cl, cd, max_idx
Example #6
0
def cl_visc_analysis(airfoil, cl_i, cl_f, cl_step, re, mach, max_iter, id):
    """Viscous analysis over range of lift coefficients."""
    # Initializes airfoil and assigns NACA
    xf = XFoil()
    xf.naca(airfoil)
    xf.max_iter = max_iter
    xf.Re = re
    xf.M = mach
    # Collects values
    a, cl, cd, cm, cp = xf.cseq(cl_i, cl_f, cl_step)
    x, cp_0 = xf.get_cp_distribution()
    # Plots all the data
    plot(a, cl, cd, cm, cp, x, cp_0, id)
Example #7
0
def alpha_visc_analysis(airfoil, alpha_i, alpha_f, alpha_step, re, mach,
                        max_iter, id):
    """Viscous analysis over range of angle of attacks."""
    # Initializes airfoil and assigns NACA
    xf = XFoil()
    xf.naca(airfoil)
    xf.max_iter = max_iter
    xf.Re = re
    xf.M = mach
    # Collects values
    a, cl, cd, cm, cp = xf.aseq(alpha_i, alpha_f, alpha_step)
    x, cp_0 = xf.get_cp_distribution()
    # Plots all the data
    plot(a, cl, cd, cm, cp, x, cp_0, id)
def get_torque(angular_velocity):
    torque_sum_small = 0
    torque_sum_large = 0
    w = angular_velocity
    for key, value in dfdict.items():
        value["blade_velocity"] = value['r_position'] * w
        value["relative_velocity"] = round(
            math.sqrt(value["blade_velocity"]**2 + value["wind_velocity"]**2),
            2)
        value["arctan"] = math.degrees(
            math.atan2(value["wind_velocity"], value["blade_velocity"]))
        aoa = round(value["arctan"] - value["pitch_angle"], 2)
        value["angle_of_attack"] = aoa
        re_n = round(
            value["relative_velocity"] * value["chord_length"] / 0.00001511, 3)
        value["Reynolds_number"] = re_n
        xf = XFoil()
        if key < 13:
            xf.airfoil = naca6409
        else:
            xf.airfoil = naca2412
        xf.Re = re_n
        xf.max_iter = 100
        xf.n_crit = 9.00
        xf.xtr = [1.00, 1.00]
        xf.M = 0
        value["Cl"], value["Cd"], value["Cm"], value["Cp"] = xf.a(aoa)
        force_reference = 0.5 * density * value["relative_velocity"]**2
        if math.isnan(value["Cl"]):
            value["torque"] = 0
        else:
            lift = value["Cl"] * force_reference * 0.0125 * value[
                'chord_length']
            drag = value["Cd"] * force_reference * 0.0125 * value[
                'chord_length']
            value["torque"] = value["r_position"] * (
                lift * math.sin(math.radians(value["pitch_angle"])) -
                drag * math.cos(math.radians(value["pitch_angle"])))
        if key < 13:
            torque_sum_small += value["torque"]
        else:
            pass
        if key > 0:
            torque_sum_large += value["torque"]
        else:
            pass
    df2 = pd.DataFrame.from_dict(dfdict, orient="index")
    df_collection.append(df2)
    torque_sum_avg = 0.5 * (torque_sum_small + torque_sum_large)
    return torque_sum_avg
def total_dict(angular_velocity):
    torque_sum = 0
    w = angular_velocity
    for key, value in dfdict.items():
        value["blade_velocity"] = value['r_position'] * w
        value["relative_velocity"] = round(
            math.sqrt(value["blade_velocity"]**2 + value["wind_velocity"]**2),
            2)
        value["arctan"] = math.degrees(
            math.atan2(value["wind_velocity"], value["blade_velocity"]))
        aoa = round(value["arctan"] - value["pitch_angle"], 1)
        value["angle_of_attack"] = aoa
        re_n = round(value["relative_velocity"] * value["chord_length"] /
                     0.00001511)
        value["Reynolds_number"] = re_n
        xf = XFoil()
        if key < 13:
            xf.airfoil = naca6409
        else:
            xf.airfoil = naca2412
        xf.Re = round(re_n / 100) * 100
        xf.max_iter = 200
        xf.n_crit = 9.00
        xf.xtr = [1.00, 1.00]
        xf.M = 0
        c_l, c_d, c_m, c_p = xf.a(aoa)
        force_reference = 0.5 * density * value["relative_velocity"]**2
        if math.isnan(c_l):
            pass
        else:
            value["Cl"] = c_l
            value["Cd"] = c_d
            value["Cm"] = c_m
            value["Cp"] = c_p
            lift = c_l * force_reference * 0.0125 * value['chord_length']
            drag = c_d * force_reference * 0.0125 * value['chord_length']
            value["lift"] = lift
            value["drag"] = drag
            # value["torque"] = value["r_position"] * lift * math.sin(math.radians(value["pitch_angle"]))
            torque = value["r_position"] * (
                lift * math.sin(math.radians(value["pitch_angle"])) -
                drag * math.cos(math.radians(value["pitch_angle"])))
            value["torque"] = torque
            torque_sum += torque
        xf.reset_bls()
    # detailed_df = pd.DataFrame.from_dict(dfdict, orient="index")
    # print(detailed_df)
    print(torque_sum, angular_velocity)
    return dfdict, torque_sum
Example #10
0
def evaluate(individual):
    global code_division

    #----------------------------------
    #遺伝子にも続いて新翼型を生成
    #----------------------------------
    #遺伝子をデコード
    ratios = decoder(individual, code_division)

    #遺伝子に基づき翼型を混合して、新しい翼型を作る
    datlist_list = [fc.read_datfile(file) for file in datfiles]
    datlist_shaped_list = [fc.shape_dat(datlist) for datlist in datlist_list]
    newdat = fc.interpolate_dat(datlist_shaped_list,ratios)

    #翼型の形に関する情報を取得する
    #foilpara == [最大翼厚、最大翼厚位置、最大キャンバ、最大キャンバ位置、S字の強さ]
    foil_para = fc.get_foil_para(newdat)

    #新しい翼型をAerofoilオブジェクトに適用
    datx = np.array([ax[0] for ax in newdat])
    daty = np.array([ax[1] for ax in newdat])
    newfoil = Airfoil(x = datx, y = daty)

    mt, mta, mc, mca, s = foil_para

    #----------------------------------
    #翼の形に関する拘束条件
    #----------------------------------
    penalty = 0
    print('===================')
    if(mc<0):
        print("out of the border")
        print("reverse_cmaber")
        penalty -= mc
    if(mt<0.08):
        print("out of the border")
        print("too_thin")
        penalty += 0.08-mt
    if(mt>0.11):
        print("out of the border")
        print("too_fat")
        penalty += mt-0.11
    #if(foil_para[4]>0.03):
    #    print("out of the border")
    #    print("peacock")
    #    print('===================')
    #    return (1.0+(foil_para[4]-0.03),)*NOBJ
    if(mta<0.23):
        print("out of the border")
        print("Atama Dekkachi!")
        penalty += 0.23 - mta
    if(mta>0.3):
        print("out of the border")
        print("Oshiri Dekkachi!")
        penalty += mta - 0.3

    #----------------------------------
    #新翼型の解析
    #----------------------------------
    xf = XFoil()
    xf.airfoil = newfoil
    #レイノルズ数の設定
    xf.Re = 1.5e5
    #境界要素法計算時1ステップにおける計算回数
    xf.max_iter = 60
    #座標整形
    xf.repanel(n_nodes = 300)
    xf.print = False
    #計算結果格納
    a, cl, cd, cm, cp = xf.cseq(0.4, 1.1, 0.1)
    lr = [l/d for l, d in zip(cl,cd)]
    #----------------------------------
    #目的値
    #----------------------------------
    try:
        #揚抗比の逆数を最小化
        obj1 = 1/lr[1]
        #揚抗比のピークを滑らかに(安定性の最大化)
        maxlr = max(lr)
        maxlr_index = lr.index(maxlr)
        obj2 = abs(maxlr - lr[maxlr_index+1])

        #下面の反りを最小化(製作再現性の最大化)
        obj3 = foil_para[4]
    except Exception as e:
        obj1,obj2,obj3=[1.0]*NOBJ
        traceback.print_exc()

    if (np.isnan(obj1) or obj1 > 1):
        obj1 = 1
    if (np.isnan(obj2) or obj2 > 1):
        obj2 = 1
    if (np.isnan(obj3) or obj3 > 1):
        obj3 = 1

    obj1 += penalty
    obj2 += penalty
    obj3 += penalty

    print("individual",individual)
    print("evaluate",obj1,obj2,obj3)
    print("max_thickness",foil_para[0])
    print("at",foil_para[1])
    print("max_camber",foil_para[2])
    print("at",foil_para[3])
    print("S",foil_para[4])
    print('===================')

    return [obj1, obj2, obj3]
if

    c = (a_max * 8 * pi * r * math.sin(phi) ** 2) / ((1 - a_max) * prop_blades * c_l * math.cos(phi))
    re = (v_r * c) / (nu_mars)

    # XFOIL #######

    from xfoil import XFoil
    xf = XFoil()

    # Import an airfoil
    from xfoil.test import XXXXX
    xf.airfoil = XXXXX

    # Setting up the analysis parameters
    xf.Re = re
    xf.max_iter = 100
    xf.M = 0.7

    # Obtaining the angle of attack, lift coefficient, drag coefficient and momentum coefficient of the airfoil
    a, cl, cd, cm = xf.aseq(0, 30, 0.5)









Example #12
0
    def evaluate(self,individual):
        DELTA = 1e10
        #----------------------------------
        #遺伝子に基づいて新翼型を生成
        #----------------------------------
        #遺伝子に基づきスプライン翼型を作成
        x = individual[:int(len(individual)/2)]
        x.insert(0,1.0)
        x.insert(int(len(x)/2)+1,0.0)
        x.append(1.0)
        y = individual[int(len(individual)/2):]
        if not (all([u - d > 0 for u, d in zip(y[:int(len(y)/2)], y[int(len(y)/2):])]) or all([u - d < 0 for u, d in zip(y[:int(len(y)/2)], y[int(len(y)/2):])])):
            print("crossed")
            return [DELTA*10]*self.NOBJ
        y.insert(0,0.0)
        y.insert(int(len(y)/2)+1,0.0)
        y.append(0.0)
        newdat = fc.spline_foil(x, y, 200)
        shape_dat = fc.shape_dat([[a, b] for a, b in zip(newdat[0][::-1], newdat[1][::-1])])

        #翼型の形に関する情報を取得する
        foil_para = fc.get_foil_para(shape_dat)
        mt, mta, mc, mca, s, crossed, bd, bt, bc, smooth, td = foil_para
        # mt: 最大翼厚(百分率)
        # mta: 最大翼厚位置(百分率)
        # mc: 最大キャンバー(百分率)
        # mca: 最大きゃんばー位置(百分率)
        # s: 翼型の下面における、最大y座標-最小y座標
        # crossed: 翼型が交差しているならTrue,それ以外ならFalse
        # bd: 翼型の粗さ(大きいほど粗い)
        # bt: 翼厚分布の粗さ(大きいほど粗い)
        # bc: キャンバー分布の粗さ(大きいほど粗い)
        # smooth: 無視
        # td: 翼厚分布

        if crossed:
            print("crossed_a")
            return [DELTA*10]*self.NOBJ
        else:
            print("hi_a")

        #新しい翼型をAerofoilオブジェクトに適用
        datx = np.array(newdat[0][::-1])
        daty = np.array(newdat[1][::-1])
        newfoil = Airfoil(x = datx, y = daty)

        #翼型の形に関する拘束条件
        penalty = 0
        if not all([t >= 0.0035 for t in td[10:80]]):
            penalty += 100 * (sum([abs(t - 0.0035)*10 for t in td[15:85] if t - 0.0035 < 0]))
        if not all([t <= 0.015 for t in td[:15]]):
            penalty += 100 * (sum([abs(t - 0.015)*10 for t in td[:15] if t > 0.015]))
        if mta > 0.4:
            penalty += 100 * (mta - 0.4)
        if mc < 0.0:
            penalty += 100 * (-mc)
        if datx[0] > 1.002 or datx[0] < 0.998:
            print("invalid foil")
            return [DELTA*10]*self.NOBJ
        #----------------------------------
        #新翼型の解析
        #----------------------------------
        try:
            xf = XFoil()
            #レイノルズ数の設定
            xf.airfoil = newfoil
            xf.Re = self.re
            xf.print = False
            xf.max_iter = 40

            #xf.polar = "polar" + id
            #境界要素法計算時1ステップにおける計算回数
            #xf.repanel(n_nodes = 180)
            #計算結果格納
            #result = xf.OneAlpha()
            cl, cd, cm, cp  = xf.a(5.0)
        #----------------------------------
        #目的値
        #----------------------------------
            if cl >= 0:
                obj1 = 1/cl
            else:
                obj1 = self.delta
            
            obj2 = cd


        except Exception as e:
            obj1,obj2=[DELTA]*self.NOBJ
            traceback.print_exc()

        if (np.isnan(obj1)):
            obj1 = DELTA
        if (np.isnan(obj2)):
            obj2 = DELTA

        return [obj1 + penalty, obj2 + penalty]
Example #13
0
#!/usr/bin/python3
from xfoil import XFoil
import matplotlib.pyplot as plt
xf = XFoil()

xf.load("revclarky.dat")
xf.Re = 1e5
xf.M = 0
xf.max_iter = 100
a, cl, cd, cm, cp = xf.aseq(-2, 2, 0.5)
plt.plot(a, cl)
plt.title("alfa vs cl")
plt.show()

#plt.plot(xf.airfoil.x,xf.airfoil.y)
#plt.axis('equal')
#plt.show()
Example #14
0
def analyze_airfoil(x,
                    y_u,
                    y_l,
                    cl,
                    rey,
                    mach=0,
                    xf=None,
                    pool=None,
                    show_output=False):
    """
    Analyze an airfoil at a given lift coefficient for given Reynolds and Mach numbers using XFoil.

    Parameters
    ----------
    x : array_like
        Airfoil x-coordinates
    y_u, y_l : array_like
        Airfoil upper and lower curve y-coordinates
    cl : float
        Target lift coefficient
    rey, mach : float
        Reynolds and Mach numbers
    xf : XFoil, optional
        An instance of the XFoil class to use to perform the analysis. Will be created if not given
    pool : multiprocessing.ThreadPool, optional
        An instance of the multiprocessing.Threadpool class used to run the xfoil_worker. Will be created if not given
    show_output : bool, optional
        If True, a debug string will be printed after analyses. False by default.

    Returns
    -------
    cd, cm : float or np.nan
        Drag and moment coefficients of the airfoil at specified conditions, or nan if XFoil did not run successfully
    """
    # If the lower and upper curves swap, this is a bad, self-intersecting airfoil. Return 1e27 immediately.
    if np.any(y_l > y_u):
        return np.nan
    else:
        clean_xf = False
        if xf is None:
            xf = XFoil()
            xf.print = show_output
            clean_xf = True

        clean_pool = False
        if pool is None:
            pool = ThreadPool(processes=1)
            clean_pool = True

        xf.airfoil = Airfoil(x=np.concatenate((x[-1:0:-1], x)),
                             y=np.concatenate((y_u[-1:0:-1], y_l)))
        xf.Re = rey
        xf.M = mach
        xf.max_iter = 100
        xf.n_crit = 0.1
        cd, cm = pool.apply(xfoil_worker, args=(xf, cl))

    if clean_xf:
        del xf
    if clean_pool:
        del pool

    return cd, cm, None if clean_xf else xf
Example #15
0
    for v in zip(*rankedAerofoils_names):
        print(str(header).format(*v))


span = 52
rho = 0.4135
velocity = 230
g = 9.81
reynolds_div_chord = 7331382
mean_chord = 3
#https://www.grc.nasa.gov/WWW/K-12/airplane/reynolds.html
massMin = 70000
massMax = 90000
massSpacing = 10000

xf = XFoil()

#Reynolds number, unit chord (see XFOIL docs UNITS section)
xf.Re = reynolds_div_chord * mean_chord
xf.max_iter = 100

print("Reynolds Number: {0}\nMax iterations: {1}\n".format(xf.Re, xf.max_iter))

cl, massList = liftCoCalc()
allAerofoils_obj = initialiseAerofoils()
runAnalysis()
print("\n")
rankedAerofoils_obj, rankedAerofoils_names = sortResults()
print("\n")
displayResults()
SPAN_POINTS_PER_METRE = 10

chord_points = int((END_CHORD - START_CHORD) * CHORD_POINTS_PER_METRE)
chord_increment = float((END_CHORD - START_CHORD) / chord_points)

span_points = int((END_SPAN - START_SPAN) * SPAN_POINTS_PER_METRE)
span_increment = float((END_SPAN - START_SPAN) / span_points)

print("Max iterations: {0}\nMass: {1}Kg".format(xf.max_iter, mass))

for j in range(chord_points + 1):
    chord = START_CHORD + (j * chord_increment)
    chord = round(chord, 2)
    mac = START_CHORD + (j * chord_increment) * (8 / (3 * pi))
    mac = round(mac, 2)
    for i in range(span_points + 1):
        span = START_SPAN + (i * span_increment)
        span = round(span, 2)

        #Reynolds number, unit chord (see XFOIL docs UNITS section)
        xf.Re = reynolds_div_chord * mac

        print("\nSpan: {0}m\tRoot Chord: {1}m\tReynolds: {2}".format(
            span, chord, xf.Re))

        cl = liftCoCalc()
        Aerofoils_obj = initialiseAerofoils()
        runAnalysis()
        displayResults()
        saveResults()
Example #17
0
    def evaluate(self,individual):

        #----------------------------------
        #遺伝子に基づいて新翼型を生成
        #----------------------------------
        #遺伝子をデコード
        ratios = self.decoder(individual, self.code_division)

        #遺伝子に基づき翼型を混合して、新しい翼型を作る
        datlist_list = [fc.read_datfile(file) for file in self.datfiles]
        datlist_shaped_list = [fc.shape_dat(datlist) for datlist in datlist_list]
        newdat = fc.interpolate_dat(datlist_shaped_list,ratios)

        #翼型の形に関する情報を取得する
        #foilpara == [最大翼厚、最大翼厚位置、最大キャンバ、最大キャンバ位置、S字の強さ]
        foil_para = fc.get_foil_para(newdat)

        #新しい翼型をAerofoilオブジェクトに適用
        datx = np.array([ax[0] for ax in newdat])
        daty = np.array([ax[1] for ax in newdat])
        newfoil = Airfoil(x = datx, y = daty)

        mt, mta, mc, mca, s = foil_para

        #----------------------------------
        #翼の形に関する拘束条件
        #----------------------------------
        """
        penalty = 0
        for g, p in zip(self.gs, self.penalties):
            if(not g):
                penalty += p
        """

        penalty = 0
        print('===================')
        if(mc<0):
            print("out of the border")
            print("reverse_cmaber")
            penalty -= mc
        if(mt<0.08):
            print("out of the border")
            print("too_thin")
            penalty += 0.08-mt
        if(mt>0.11):
            print("out of the border")
            print("too_fat")
            penalty += mt-0.11
        #if(foil_para[4]>0.03):
        #    print("out of the border")
        #    print("peacock")
        #    print('===================')
        #    return (1.0+(foil_para[4]-0.03),)*NOBJ
        if(mta<0.23):
            print("out of the border")
            print("Atama Dekkachi!")
            penalty += 0.23 - mta
        if(mta>0.3):
            print("out of the border")
            print("Oshiri Dekkachi!")
            penalty += mta - 0.3

        #----------------------------------
        #新翼型の解析
        #----------------------------------
        xf = XFoil()
        xf.airfoil = newfoil
        #レイノルズ数の設定
        xf.Re = self.re
        #境界要素法計算時1ステップにおける計算回数
        xf.max_iter = 60
        #print("hi")
        #print(vars)
        #scope = locals()
        #var0, var1, var2, var3, var4, var5, var6, var7 = [0 if var == None or var == '' else eval(var,scope) for var in self.vars]

        #計算結果格納
        a, cl, cd, cm, cp = xf.cseq(0.4, 1.1, 0.1)
        lr = [l/d for l, d in zip(cl,cd)]
        #----------------------------------
        #目的値
        #----------------------------------
        """
        try:
            obj1,obj2,obj3 = [eval(o) for o in Os]
        except Exception as e:
            obj1,obj2,obj3=[1.0]*self.NOBJ
            traceback.print_exc()
        """

        try:
            #揚抗比の逆数を最小化
            obj1 = 1/lr[1]
            #揚抗比のピークを滑らかに(安定性の最大化)
            maxlr = max(lr)
            maxlr_index = lr.index(maxlr)
            obj2 = abs(maxlr - lr[maxlr_index+1])

            #下面の反りを最小化(製作再現性の最大化)
            obj3 = s
        except Exception as e:
            obj1,obj2,obj3=[1.0]*self.NOBJ
            traceback.print_exc()

        if (np.isnan(obj1) or obj1 > 1):
            obj1 = 1
        if (np.isnan(obj2) or obj2 > 1):
            obj2 = 1
        if (np.isnan(obj3) or obj3 > 1):
            obj3 = 1

        obj1 += penalty
        obj2 += penalty
        obj3 += penalty

        return [obj1, obj2, obj3]
Example #18
0
fig, ax = plt.subplots(1, 1, figsize=(9, 8))

klist = [1]

for k in range(1):
    print(k)
    x = aifoils[k]['x'].values
    y = aifoils[k]['y'].values

    ang_low = -32
    ang_high = 32
    ang_spacing = 2

    xfc = XFoil()
    xfc.airfoil = Airfoil(x, y)
    xfc.Re = re[k]
    xfc.max_iter = 40
    ac, clc, cdc, cmc, cpminc = xfc.aseq(ang_low, ang_high, ang_spacing)

    df = aifoils_cfd[k].where(aifoils_cfd[k]['alpha [deg]'] >= aoa_l)
    df = df.where(aifoils_cfd[k] <= aoa_h)
    df = df.dropna()  #.values

    cl_panel = []
    cdp_panel = []

    for aoa in df['alpha [deg]']:
        data_xy = aifoils[k].values
        CL, CDP, Cp, pp = panel(data_xy[:, :], alfader=aoa)
        cl_panel.append(CL)
        cdp_panel.append(CDP)
Example #19
0
    def evaluate(self, individual):
        #解析が発散した際の評価値
        DELTA = 1e10
        #----------------------------------
        #遺伝子に基づいて新翼型を生成
        #----------------------------------
        #遺伝子をデコード
        ratios = self.decoder(individual, self.code_division)

        #遺伝子に基づき翼型を混合して、新しい翼型を作る
        datlist_list = [fc.read_datfile(file) for file in self.datfiles]
        datlist_shaped_list = [
            fc.shape_dat(datlist) for datlist in datlist_list
        ]
        newdat = fc.interpolate_dat(datlist_shaped_list, ratios)

        #翼型の形に関する情報を取得する
        mt, mta, mc, mca, s, crossed, bd, bt, bc, smooth, td = fc.get_foil_para(
            newdat)

        #新しい翼型をAerofoilオブジェクトに適用
        datx = np.array([ax[0] for ax in newdat])
        daty = np.array([ax[1] for ax in newdat])
        newfoil = Airfoil(x=datx, y=daty)

        #----------------------------------
        #翼の形に関する拘束条件
        #----------------------------------
        penalty = 0
        #キャンバに関する拘束条件
        if (mc < 0):
            penalty -= mc
        #最大翼厚に関する拘束条件
        if (mt < 0.08):
            penalty += 0.08 - mt
        if (mt > 0.11):
            penalty += mt - 0.11
        #最大翼厚位置に関する拘束条件
        if (mta < 0.23):
            penalty += 0.23 - mta
        if (mta > 0.3):
            penalty += mta - 0.3

        #----------------------------------
        #新翼型の解析
        #----------------------------------
        xf = XFoil()
        xf.airfoil = newfoil
        #レイノルズ数の設定
        xf.Re = self.re
        #境界要素法計算時1ステップにおける計算回数
        xf.max_iter = 60
        xf.print = False

        #計算結果格納
        a, cl, cd, cm, cp = xf.cseq(0.4, 1.1, 0.1)
        #----------------------------------
        #目的値
        #----------------------------------
        try:
            #揚抗比の逆数を最小化
            obj1 = 1 / lr[1]

            #揚抗比のピークを滑らかに(安定性の最大化)
            maxlr = max(lr)
            maxlr_index = lr.index(maxlr)
            obj2 = abs(maxlr - lr[maxlr_index + 1])

            #下面の反りを最小化(製作再現性の最大化)
            obj3 = s

        except Exception as e:
            obj1, obj2, obj3 = [DELTA] * self.NOBJ
            traceback.print_exc()

        if (np.isnan(obj1) or obj1 > 1):
            obj1 = DELTA
        if (np.isnan(obj2) or obj2 > 1):
            obj2 = DELTA
        if (np.isnan(obj3) or obj3 > 1):
            obj3 = DELTA

        obj1 += penalty
        obj2 += penalty
        obj3 += penalty

        return [obj1, obj2, obj3]
Example #20
0
def feature_xfoil(cst_u,
                  cst_l,
                  t,
                  Minf: float,
                  Re,
                  AoA,
                  n_crit=0.1,
                  fname='feature-xfoil.txt'):
    '''
    Evaluate by xfoil and extract features.

    Inputs:
    ---
    cst-u, cst-l:   list of upper/lower CST coefficients of the airfoil. \n
    t:      airfoil thickness or None \n
    Minf:   free stream Mach number for wall Mach number calculation \n
    Re, AoA (deg): flight condition (s), float or list, for Xfoil \n
    n_crit: critical amplification ratio for transition in xfoil \n
    fname:  output file name. If None, then no output \n

    ### Dependencies: cst-modeling3d, xfoil  
    '''

    from cst_modeling.foil import cst_foil
    from xfoil import XFoil
    from xfoil.model import Airfoil

    #TODO: Build foil
    #! 201 is the maximum amount of points that xfoil can handle
    #! tail = 0.001 is to avoid point overlap
    xx, yu, yl, t0, R0 = cst_foil(201, cst_u, cst_l, x=None, t=t, tail=0.001)

    #! xfoil do not support leading edge of (0,0) on both upper and lower surface
    x = np.array(list(reversed(xx[1:])) + xx[1:])
    y = np.array(list(reversed(yu[1:])) + yl[1:])
    foil = Airfoil(x, y)

    #TODO: Xfoil
    xf = XFoil()
    xf.print = False
    xf.airfoil = foil
    xf.max_iter = 40

    #* Transition by power law
    xf.n_crit = n_crit

    #TODO: Xfoil calculation
    if not isinstance(Re, list):
        Re = [Re]
        AoA = [AoA]

    n = len(Re)
    for i in range(n):

        xf.reset_bls()

        if Re[i] is not None:
            xf.Re = Re[i]

        cl, cd, cm, cp = xf.a(AoA[i])
        x, cp = xf.get_cp_distribution()

        print(xf.Re, AoA[i], cl)

        #* Extract features
        fF = PhysicalXfoil(Minf, AoA[i], Re[i])
        fF.setdata(x, y, cp)
        fF.extract_features()

        #* Output
        if fname is None:
            continue

        if i == 0:
            f = open(fname, 'w')
        else:
            f = open(fname, 'a')

        f.write('\n')
        f.write('%10s   %15.6f \n' % ('Minf', Minf))
        f.write('%10s   %15.6f \n' % ('AoA', AoA[i]))
        f.write('%10s   %15.6f \n' % ('Re', Re[i] / 1e6))
        f.write('%10s   %15.6f \n' % ('CL', cl))
        f.write('%10s   %15.6f \n' % ('Cd', cd))
        f.write('%10s   %15.6f \n' % ('Cm', cm))
        f.close()

        fF.output_features(fname=fname, append=True)
from xfoil import XFoil
from xfoil.test import naca0012

xf = XFoil()
xf.airfoil = naca0012
xf.Re = 1e6
xf.max_iter = 40
a, cl, cd, cm, co = xf.aseq(-20, 20, 0.5)
Example #22
0
b = Xwing_aero1[:, 1]
archive3 = open('lt.txt', 'w')

for line in range(len(aa)):
    aux = [aa[line], b[line]]
    string = str(aux).replace("[",
                              " ").replace(",",
                                           " ").replace("]",
                                                        " ").replace("'", " ")
    archive3.writelines(string + '\n')
    aux.clear

# Calculates the aerodynamic coeff using Xfoil
archive3.close()
xf.load('lt.txt')
xf.Re = 1e3
xf.max_iter = 100
ann, cl, cd, cm, co = xf.aseq(1, 11, 1)
an = np.linspace(1, 10, 10)
desired = np.zeros(31)
desired[0:10] = cl
desired[10:20] = cd
desired[20:30] = cm
Surf, Iben, Itor, Xcg, Ycg = Struct.ArfoilProperties(1.0, Xwing_struct1)
desired[30] = Xcg
#2.Initialize Aero and Structural Models

#2.a. Aero Model
Elements, Xc, Xn, Xt, DL, A = Aero.InitializeAeroModel(Xwing_aero)
AoA, Vnorm = 0.0, 6.0
Vinf = np.array([np.cos(AoA / 57.3), np.sin(AoA / 57.3)]) * Vnorm  #wind speed
Example #23
0
    foil = Airfoil(x, y)

    #TODO: Xfoil
    xf = XFoil()
    xf.print = False
    xf.max_iter = 40
    xf.airfoil = foil
    xf.xtr = [0.0, 0.0]

    Minf = 0.2
    AoA  = 8.0
    Re   = 1e7
    fname = 'feature-xfoil.txt'

    xf.M = Minf
    xf.Re = Re

    cl, cd, cm, cp = xf.a(AoA)
    x, cp = xf.get_cp_distribution()

    with open(fname, 'w') as f:
        f.write('%10s   %15.6f \n'%('Minf', Minf))
        f.write('%10s   %15.6f \n'%('AoA', AoA))
        f.write('%10s   %15.6f \n'%('Re', Re/1e6))
        f.write('%10s   %15.6f \n'%('CL', cl))
        f.write('%10s   %15.6f \n'%('Cd', cd))
        f.write('%10s   %15.6f \n'%('Cm', cm))

    fF = PhysicalXfoil(Minf, AoA, Re)
    fF.setdata(x,y,cp)
    fF.extract_features()