Example #1
0
def XGBoost():
    try:
        params = {
            'objective': 'binary:logistic',
            'eta': 0.08,
            'colsample_bytree': 0.886,
            'min_child_weight': 1.1,
            'max_depth': 7,
            'subsample': 0.886,
            'gamma': 0.1,
            'lambda': 10,
            'verbose_eval': True,
            'eval_metric': 'auc',
            'scale_pos_weight': 6,
            'seed': 201703,
            'missing': -1
        }
        xgbtrain = xgb.DMatrix(X_train, y_train)
        xgbtest = xgb.DMatrix(X_test)
        model = xgb.train(params, xgbtrain, num_boost_round=200)
        xgb.save_model('xgb_time.model')
        sys.exit(0)
        predicted = model.predict(xgbtest)
        return predicted
    except:
        print('die')
Example #2
0
 def update(self, score, xgb):
     params = xgb.get_params()
     if self.best_score > score:
         prefix = str(-1 * score)[2:6]
         self.best_score = score
         self.best_params = params
         self.best_model = xgb
         self._write_json(self.best_params,
                          "tmp/best_params_{}.json".format(prefix))
         xgb.save_model("tmp/best_model_{}.xgb".format(prefix))
         print("best model updated: score: {}, params: {}".format(
             score, params))
     else:
         pass
Example #3
0
def run_cv(x_train, x_test, y_train, y_test):
    x_train = x_train
    conf.xgb_config()
    tic = time.time()
    data_message = 'X_train.shape={}, X_test.shape = {}'.format(
        np.shape(x_train), np.shape(x_test))
    print(data_message)
    xgb = XGBooster(conf)
    best_auc, best_round, cv_rounds, best_model = xgb.fit(x_train, y_train)
    print('Training time cost {}s'.format(time.time() - tic))
    xgb.save_model()
    result_message = 'best_auc = {}, best_round = {}'.format(
        best_auc, best_round)
    print(result_message)

    # now = time.strftime('%Y-%m-%d %H:%M')
    result_saved_path = '../result/result_{}-{:.4f}.csv'.format(now, best_auc)
    xgb_predict(best_model, x_test, y_test, save_result_path=result_saved_path)
Example #4
0
    'learning_rate':0.05,
    'seed':2017,
    'nthread':12,
    'silent': 1
    }



#plst+=[('eval_metric','auc')]
#evallist=[(x_val,'eval'),(x_train,'train')]

num_round=3000
plst=list(params.items())
plst+= [('eval_metric', 'auc')]
evallist = [(xgb_val, 'eval'), (xgb_train, 'train')]
xgb=xgb.train(params,xgb_train,num_boost_round=num_round)
print("save model")
xgb.save_model('./model/model4.txt')

print('开始预测')
preds_sub=xgb.predict(xgb_test)

test_tobepredicted['Ki']=preds_sub
test_tobepredicted.to_csv('./result/result4.csv',index=False)

# with open("result1.csv", "w") as f:
#     sys.stdout = f
#     print "Protein_ID,Molecule_ID"
#     for index, Protein_ID in enumerate(user_ids):
#         print "{},{}".format(userid, y[index])