Example #1
0
    def create(self):
        """Overloaded method.
        """
        self.xref = self.get('xref')
        self.yref = self.get('yref')
        self.nxpix = self.get('nxpix')
        self.binsz = self.get('binsz')  # Dimension of the pimap (degrees)
        self.proj = self.get('proj')

        sidex = self.nxpix * self.binsz
        logger.info('Output image dimensions are %.1f x %.1f arcmin.' %\
                    (sidex*60, sidex*60))

        logger.info('Center of the image is in R.A.=%.3f Dec.=%.3f' %
                    (self.xref, self.yref))
        # Build the WCS object
        self.w = wcs.WCS(naxis=2)
        self.w.wcs.crpix = [(self.nxpix + 1) / 2, (self.nxpix + 1) / 2]
        self.w.wcs.cdelt = [-self.binsz, self.binsz]
        self.w.wcs.crval = [self.xref, self.yref]
        self.w.wcs.ctype = ['RA---%s' % self.proj, 'DEC--%s' % self.proj]
        self.w.wcs.equinox = 2000.0
        #w.wcs.radesys = 'ICRS'
        self.header = self.w.to_header()
        self.pol_x = numpy.zeros((self.nxpix, self.nxpix))
        self.pol_y = numpy.zeros((self.nxpix, self.nxpix))
        pass
Example #2
0
 def __init__(self, file_path):
     """Constructor.
     """
     assert (file_path.endswith('.fits'))
     logger.info('Opening input binned file %s...' % file_path)
     self.hdu_list = fits.open(file_path)
     self.hdu_list.info()
Example #3
0
 def __init__(self, psf_file_path):
     """Constructor.
     """
     logger.info("Reading PSF data from %s..." % psf_file_path)
     self.hdu_list = fits.open(psf_file_path)
     self.hdu_list.info()
     _data = self.hdu_list["PSF"].data
     W = _data["W"]
     sigma = _data["SIGMA"]
     N = _data["N"]
     r_c = _data["R_C"]
     eta = _data["ETA"]
     self.__params = (W, sigma, N, r_c, eta)
     # Tabulate the actual PSF values.
     _r = numpy.linspace(0, self.MAX_RADIUS, 250)
     _y = gauss_king(_r, *self.__params)
     fmt = dict(xname="r", xunits="arcsec", yname="PSF", yunits="sr$^{-1}$")
     xInterpolatedUnivariateSpline.__init__(self, _r, _y, k=2, **fmt)
     # Include the solid angle for the actual underlying random generator.
     _y *= 2 * numpy.pi * _r
     fmt = dict(rvname="r", rvunits="arcsec", pdfname="$2 \\pi r \\times$ PSF", pdfunits="")
     self.generator = xUnivariateGenerator(_r, _y, k=1, **fmt)
     # Finally, calculate the
     self.eef, self.hew = self.build_eef()
     logger.info(self)
Example #4
0
 def add_circle(self, ra, dec, radius, pmax, type='radial'):
     logger.info('add a circle at ra=%f, dec=%f, radius=%f. PMAX=%f' %
                 (ra, dec, rad, pmax))
     for i in range(self.nxpix):
         for j in range(self.nxpix):
             # radial:
             #posx = nxpix/2.-i
             #posy = -nxpix/2.+j
             # circular:
             #p_x   = i #-nxpix+j
             #p_y   = j #-nxpix+i
             world = self.w.wcs_pix2world([[i, j]], 0)
             w_ra = world[0][0]
             w_dec = world[0][1]
             dx = (w_ra - ra) * numpy.cos(
                 numpy.deg2rad(dec))  # Effect of the projection
             dy = w_dec - dec
             p_x = -dy
             p_y = +dx
             dist = numpy.sqrt(dx * dx + dy * dy)
             #print w_ra, w_dec, ra, dec, dist, radius
             if (dist > radius):
                 p_x = 0
                 p_y = 0
                 pass
             self.pol_x[i, j] = p_x
             self.pol_y[i, j] = p_y
             pass
         pass
     pol_deg = numpy.sqrt(self.pol_x * self.pol_x + self.pol_y * self.pol_y)
     self.pol_x *= pmax / pol_deg.max()
     self.pol_y *= pmax / pol_deg.max()
     pass
Example #5
0
 def bin_(self):
     """Overloaded method.
     """
     evt_header = self.event_file.hdu_list['PRIMARY'].header
     num_chans = evt_header['DETCHANS']
     total_time = self.event_file.total_good_time()
     binning = numpy.linspace(-0.5, num_chans -0.5, num_chans+1)
     n, bins = numpy.histogram(self.event_data['PHA'], bins=binning)
     primary_hdu = self.build_primary_hdu()
     data = [numpy.arange(num_chans),
             n/total_time,
             numpy.sqrt(n)/total_time
     ]
     spec_hdu = xBinTableHDUPHA1(data)
     spec_hdu.setup_header(self.event_file.primary_keywords())
     irf_name = evt_header['IRFNAME']
     keywords = [('EXPOSURE', total_time, 'exposure time'),
                 ('RESPFILE', irf_file_path(irf_name, 'rmf')),
                 ('ANCRFILE', irf_file_path(irf_name, 'arf'))]
     spec_hdu.setup_header(keywords)
     hdu_list = fits.HDUList([primary_hdu, spec_hdu])
     hdu_list.info()
     logger.info('Writing binned PHA1 data to %s...' % self.get('outfile'))
     hdu_list.writeto(self.get('outfile'), clobber=True)
     logger.info('Done.')
Example #6
0
def analyze():
    """Analyze the data.
    """
    logger.info('Opening output file %s...' % ANALYSIS_FILE_PATH)
    analysis_file = open(ANALYSIS_FILE_PATH, 'w')
    for i, (_min, _max) in enumerate(zip(TIME_BINNING[:-1], TIME_BINNING[1:])):
        _mcube = xBinnedModulationCube(_mcube_file_path(i))
        _mcube.fit()
        _fit_results = _mcube.fit_results[0]
        _sel_file = xEventFile(_sel_file_path(i))
        _time = numpy.average(_sel_file.event_data['TIME'])
        _sel_file.close()
        _time_errp = _max - _time
        _time_errm = _time - _min
        _pol_deg = _fit_results.polarization_degree
        _pol_deg_err = _fit_results.polarization_degree_error
        _pol_angle = _fit_results.phase
        _pol_angle_err = _fit_results.phase_error
        _spec_fitter = PIPELINE.xpxspec(_pha1_file_path(i), plot=False)
        (_index, _index_err), (_norm,
                               _norm_err) = _spec_fitter.fit_parameters()
        # The division by the phase interval is a workaround and we should
        # keep track of that in xpselect.
        _norm /= (_max - _min)
        _norm_err /= (_max - _min)
        _data = (_time, _time_errp, _time_errm, _pol_deg, _pol_deg_err,
                 _pol_angle, _pol_angle_err, _index, _index_err, _norm,
                 _norm_err)
        _fmt = ('%.4e   ' * len(_data)).strip()
        _fmt = '%s\n' % _fmt
        _line = _fmt % _data
        analysis_file.write(_line)
    analysis_file.close()
Example #7
0
 def add_circle(self,ra,dec,radius,pmax,ptype='circular',angle=0.0):
     ''' This implement the case of a circular shape'''
     logger.info('add a circle at ra=%f, dec=%f, radius=%f. PMAX=%f'%(ra,dec,rad,pmax))
     for i in range(self.nxpix):
         for j in range(self.nxpix):
             world = self.w.wcs_pix2world([[i,j]], 0)
             w_ra  = world[0][0]          
             w_dec = world[0][1]
             dx    =  (w_ra-ra)*numpy.cos(numpy.deg2rad(dec)) # Effect of the projection
             dy    =  w_dec-dec
             if ptype is 'linear':
                 p_x = numpy.cos(numpy.deg2rad(angle))
                 p_y = numpy.sin(numpy.deg2rad(angle))
             elif ptype is 'circular':
                 p_x = -dy
                 p_y = +dx
             elif ptype is 'radial':
                 p_x = dx
                 p_y = dy
                 pass
             dist = numpy.sqrt(dx*dx+dy*dy)
             #print w_ra, w_dec, ra, dec, dist, radius
             if (dist>radius):
                 p_x=0
                 p_y=0
                 pass
             self.pol_x[i,j]=self.pol_x[i,j]+p_x
             self.pol_y[i,j]=self.pol_y[i,j]+p_y            
             pass
         pass
     pol_deg=numpy.sqrt(self.pol_x*self.pol_x+self.pol_y*self.pol_y)
     self.pol_x*=pmax/pol_deg.max()
     self.pol_y*=pmax/pol_deg.max()
     pass
Example #8
0
def plot_swift_lc(grb_list,show=True):
    """Plots Swift GRB light curves.
    """
    plt.figure(figsize=(10, 8), dpi=80)
    plt.title('Swift XRT light curves')
    num_grb = 0
    for grb_name in grb_list:
        flux_outfile = download_swift_grb_lc_file(grb_name, min_obs_time=21600)
        if flux_outfile is not None:
            integral_flux_spline = parse_light_curve(flux_outfile)
            if integral_flux_spline is not None:
                if grb_name == 'GRB 130427A':
                    integral_flux_spline.plot(num_points=1000,logx=True,\
                                              logy=True,show=False,\
                                              color="red",linewidth=1.0)
                    num_grb += 1
                else:
                    c = random.uniform(0.4,0.8)
                    integral_flux_spline.plot(num_points=1000,logx=True,\
                                              logy=True,show=False,\
                                              color='%f'%c,linewidth=1.0)
                    num_grb += 1
        else:
            continue
    logger.info('%i GRBs included in the plot.'%num_grb)
    if show:
        plt.show()
Example #9
0
def parse_blazar_list(PRIORITY_ONLY):
    """
    """
    logger.info("Parsing input file %s..." % BLAZAR_LIST_PATH)
    src_list = []
    input_file = open(BLAZAR_LIST_PATH)
    for i in range(6):
        input_file.next()
    for line in input_file:
        if line.startswith("-"):
            if PRIORITY_ONLY is False:
                for i in range(3):
                    line = input_file.next()
                PRIORITY_ONLY = True
            else:
                return src_list
        line = line.replace("BL Lac", "BL_Lac")
        name, line, notes = line[:12].strip(), line[12:95], line[95:]
        ra, dec, opt_class, sed_class, flux_max, flux_min, p_opt_max, p_opt_min = line.split()
        flux_max = float(flux_max)
        flux_min = float(flux_min)
        p_opt_max = float(p_opt_max)
        p_opt_min = float(p_opt_min)
        if p_opt_min < 0.5:
            p_opt_min = 0.5
        if p_opt_max > 0.5:
            src = {
                "name": name,
                "flux_min": flux_min,
                "flux_max": flux_max,
                "p_opt_max": p_opt_max,
                "p_opt_min": p_opt_min,
            }
            src_list.append(src)
Example #10
0
 def __init__(self, file_path):
     """Constructor.
     """
     assert(file_path.endswith('.fits'))
     logger.info('Opening input binned file %s...' % file_path)
     self.hdu_list = fits.open(file_path)
     self.hdu_list.info()
Example #11
0
def analyze():
    """Analyze the data.
    """
    logger.info('Opening output file %s...' % ANALYSIS_FILE_PATH)
    analysis_file = open(ANALYSIS_FILE_PATH, 'w')
    for i, (_min, _max) in enumerate(zip(TIME_BINNING[:-1],
                                         TIME_BINNING[1:])):
        _mcube = xBinnedModulationCube(_mcube_file_path(i))
        _mcube.fit()
        _fit_results = _mcube.fit_results[0]
        _sel_file = xEventFile(_sel_file_path(i))
        _time = numpy.average(_sel_file.event_data['TIME'])
        _sel_file.close()
        _time_errp = _max - _time
        _time_errm = _time - _min
        _pol_deg = _fit_results.polarization_degree
        _pol_deg_err = _fit_results.polarization_degree_error
        _pol_angle = _fit_results.phase
        _pol_angle_err = _fit_results.phase_error
        _spec_fitter = PIPELINE.xpxspec(_pha1_file_path(i), plot=False)
        (_index, _index_err), (_norm, _norm_err) = _spec_fitter.fit_parameters()
        # The division by the phase interval is a workaround and we should
        # keep track of that in xpselect.
        _norm /= (_max - _min)
        _norm_err /= (_max - _min)
        _data = (_time, _time_errp, _time_errm, _pol_deg, _pol_deg_err,
                 _pol_angle, _pol_angle_err, _index, _index_err, _norm,
                 _norm_err)
        _fmt = ('%.4e   ' * len(_data)).strip()
        _fmt = '%s\n' % _fmt
        _line = _fmt % _data
        analysis_file.write(_line)
    analysis_file.close()
Example #12
0
    def create(self):
        """Overloaded method.
        """
        self.xref  = self.get('xref')
        self.yref  = self.get('yref')
        self.nxpix = self.get('nxpix')
        self.binsz = self.get('binsz') # Dimension of the pimap (degrees)
        self.proj = self.get('proj')

        
        sidex = self.nxpix*self.binsz
        logger.info('Output image dimensions are %.1f x %.1f arcmin.' %\
                    (sidex*60, sidex*60))
                    
        logger.info('Center of the image is in R.A.=%.3f Dec.=%.3f' % (self.xref,self.yref))                    
        # Build the WCS object
        self.w = wcs.WCS(naxis=2)
        self.w.wcs.crpix = [(self.nxpix+1)/2,(self.nxpix+1)/2]
        self.w.wcs.cdelt = [-self.binsz, self.binsz]
        self.w.wcs.crval = [self.xref, self.yref]
        self.w.wcs.ctype = ['RA---%s' % self.proj, 'DEC--%s' % self.proj]
        self.w.wcs.equinox = 2000.0
        #w.wcs.radesys = 'ICRS'
        self.header = self.w.to_header()
        self.pol_x=numpy.zeros((self.nxpix,self.nxpix))
        self.pol_y=numpy.zeros((self.nxpix,self.nxpix))
        pass
Example #13
0
def analyze():
    """
    """
    if os.path.exists(ANALYSIS_FILE_PATH):
        logger.info('%s exists, delete it if you want to recreate it.' %\
                    ANALYSIS_FILE_PATH)
        return
    logger.info('Opening output file %s...' % ANALYSIS_FILE_PATH)
    analysis_file = open(ANALYSIS_FILE_PATH, 'w')
    for i, (_min, _max) in enumerate(PHASE_BINNING):
        _mcube = xBinnedModulationCube(_mcube_file_path(i))
        _mcube.fit()
        _fit_results = _mcube.fit_results[-1]
        print _fit_results
        _phase = 0.5*(_min + _max)
        _phase_err = 0.5*(_max - _min)
        _pol_deg = _fit_results.polarization_degree
        _pol_deg_err = _fit_results.polarization_degree_error
        _pol_angle = _fit_results.phase
        _pol_angle_err = _fit_results.phase_error
        _data = (_phase, _phase_err, _pol_deg, _pol_deg_err, _pol_angle,
                 _pol_angle_err)
        _fmt = ('%.4e   ' * len(_data)).strip()
        _fmt = '%s\n' % _fmt
        _line = _fmt % _data
        analysis_file.write(_line)
    analysis_file.close()
Example #14
0
 def add_circle(self,ra,dec,radius,pmax,type='radial'):
     logger.info('add a circle at ra=%f, dec=%f, radius=%f. PMAX=%f'%(ra,dec,rad,pmax))
     for i in range(self.nxpix):
         for j in range(self.nxpix):
             # radial:
             #posx = nxpix/2.-i
             #posy = -nxpix/2.+j
             # circular:
             #p_x   = i #-nxpix+j
             #p_y   = j #-nxpix+i
             world = self.w.wcs_pix2world([[i,j]], 0)
             w_ra  = world[0][0]          
             w_dec = world[0][1]
             dx    =  (w_ra-ra)*numpy.cos(numpy.deg2rad(dec)) # Effect of the projection
             dy    =  w_dec-dec
             p_x = -dy
             p_y = +dx
             dist = numpy.sqrt(dx*dx+dy*dy)
             #print w_ra, w_dec, ra, dec, dist, radius
             if (dist>radius):
                 p_x=0
                 p_y=0
                 pass
             self.pol_x[i,j]=p_x
             self.pol_y[i,j]=p_y            
             pass
         pass
     pol_deg=numpy.sqrt(self.pol_x*self.pol_x+self.pol_y*self.pol_y)
     self.pol_x*=pmax/pol_deg.max()
     self.pol_y*=pmax/pol_deg.max()
     pass
Example #15
0
    def rvs_event_list(self, aeff, psf, modf, edisp, **kwargs):
        """Extract an event list for the full ROI.

        Arguments
        ---------
        aeff : :py:class:`ximpol.irf.arf.xEffectiveArea` object.
            The effective area to be used.

        psf : :py:class:`ximpol.irf.psf.xPointSpreadFunction` object.
            The PSF to be used.

        modf : :py:class:`ximpol.irf.mrf.xModulationFactor` object.
            The modulation factor to the used.

        edisp : :py:class:`ximpol.irf.rmf.xEnergyDispersion` object.
            The energy dispersion to be used.

        sampling_time : array
            The array to sample the source light curve.

        Warning
        -------
        The sampling_time should not be the same for all sources, and each
        source should be able to decide its own in a sensible way.
        (See issue #44.)
        """
        event_list = xMonteCarloEventList()
        for source in self.values():
            logger.info('Generating event list for source "%s"...' %\
                        source.name)
            event_list += source.rvs_event_list(aeff, psf, modf, edisp,
                                                **kwargs)
            event_list.apply_vignetting(aeff, self.ra, self.dec)
        event_list.sort()
        return event_list
Example #16
0
 def bin_(self):
     """Overloaded method.
     """
     evt_header = self.event_file.hdu_list['PRIMARY'].header
     if self.get('mc'):
         energy = self.event_data['MC_ENERGY']
     else:
         energy = self.event_data['ENERGY']
     phi = self.event_data['PE_ANGLE']
     counts, xedges, yedges = numpy.histogram2d(energy, phi,
                                                bins=self.make_binning())
     primary_hdu = self.build_primary_hdu()
     emin, emax = xedges[:-1], xedges[1:]
     emean = []
     for _emin, _emax in zip(emin, emax):
         emean.append(numpy.mean(energy[(energy > _emin)*(energy < _emax)]))
     data = [emin, emax, emean, counts]
     xBinTableHDUMCUBE.set_phi_spec(self.get('phibins'))
     mcube_hdu = xBinTableHDUMCUBE(data)
     mcube_hdu.setup_header(self.event_file.primary_keywords())
     gti_hdu = self.event_file.hdu_list['GTI']
     hdu_list = fits.HDUList([primary_hdu, mcube_hdu, gti_hdu])
     hdu_list.info()
     logger.info('Writing binned MCUBE data to %s...' % self.get('outfile'))
     hdu_list.writeto(self.get('outfile'), clobber=True)
     logger.info('Done.')
Example #17
0
    def rvs_event_list(self, aeff, psf, modf, edisp, **kwargs):
        """Extract a random event list for the model component.

        TODO: here we should pass the sampling phase, instead?

        TODO: properly take into account the derivatives in the ephemeris.
        """
        # Create the event list and the count spectrum.
        event_list = xMonteCarloEventList()
        # Mind the count spectrum is made in phase!
        sampling_phase = numpy.linspace(0., 1., 100)
        count_spectrum = xCountSpectrum(self.energy_spectrum, aeff,
                                        sampling_phase, self.column_density,
                                        self.redshift)
        # All this is not properly taking into account the ephemeris.
        min_time = kwargs['tstart']
        max_time = kwargs['tstop']
        #min_time=sampling_time[0]
        #max_time = sampling_time[-1]
        delta_time = (max_time - min_time)
        period = self.ephemeris.period(min_time)
        # This is not accurate, as we are effectively discarding the last
        # fractional period. Need to think about it.
        num_periods = int(delta_time/period)
        num_expected_events = delta_time*count_spectrum.light_curve.norm()
        # Extract the number of events to be generated based on the integral
        # of the light curve over the simulation time.
        num_events = numpy.random.poisson(num_expected_events)
        logger.info('About to generate %d events...' % num_events)
        # Extract the event phases and sort them.
        col_phase = count_spectrum.light_curve.rvs(num_events)
        event_list.set_column('PHASE', col_phase)
        col_period = numpy.random.randint(0, num_periods, num_events)
        col_time = (col_period + col_phase)*period
        event_list.set_column('TIME', col_time)
        # Extract the MC energies and smear them with the energy dispersion.
        col_mc_energy = count_spectrum.rvs(col_phase)
        event_list.set_column('MC_ENERGY', col_mc_energy)
        col_pha = edisp.matrix.rvs(col_mc_energy)
        event_list.set_column('PHA', col_pha)
        event_list.set_column('ENERGY', edisp.ebounds(col_pha))
        # Extract the MC sky positions and smear them with the PSF.
        col_mc_ra, col_mc_dec = self.rvs_sky_coordinates(num_events)
        event_list.set_column('MC_RA', col_mc_ra)
        event_list.set_column('MC_DEC', col_mc_dec)
        col_ra, col_dec = psf.smear(col_mc_ra, col_mc_dec)
        event_list.set_column('RA', col_ra)
        event_list.set_column('DEC', col_dec)
        # Extract the photoelectron emission directions.
        pol_degree = self.polarization_degree(col_mc_energy, col_phase,
                                              col_mc_ra, col_mc_dec)
        pol_angle = self.polarization_angle(col_mc_energy, col_phase,
                                            col_mc_ra, col_mc_dec)
        col_pe_angle = modf.rvs_phi(col_mc_energy, pol_degree, pol_angle)
        event_list.set_column('PE_ANGLE', col_pe_angle)
        # Set the source ID.
        event_list.set_column('MC_SRC_ID', self.identifier)
        event_list.sort()
        return event_list
Example #18
0
def xpsrccoords(source_name):
    """
    """
    logger.info('Querying CDS name resolver for "%s"...' % source_name)
    coords = SkyCoord.from_name(source_name)
    print(coords.icrs)
    print(coords.galactic)
    logger.info('Done, bye!')
def parse(file_path, emin=1., emax=15., flux_scale=6.0067e-2):
    """Parse the input file with the complete spectral and polarization model.
    """
    logger.info('Parsing input file %s...' % file_path)
    energy, flux, angle, degree = numpy.loadtxt(file_path, unpack=True)
    flux *= flux_scale
    _mask = (energy >= emin) * (energy <= emax)
    return energy[_mask], flux[_mask], angle[_mask], degree[_mask]
Example #20
0
File: rmf.py Project: pabell/ximpol
 def __init__(self, mrf_file_path):
     """Constructor.
     """
     logger.info('Reading energy dispersion data from %s...' % mrf_file_path)
     self.hdu_list = fits.open(mrf_file_path)
     self.hdu_list.info()
     self.matrix = xEnergyDispersionMatrix(self.hdu_list['MATRIX'])
     self.ebounds = xEnergyDispersionBounds(self.hdu_list['EBOUNDS'])
Example #21
0
def build_grb_fits_file(data,outfile):
    primary_hdu = xPrimaryHDU()
    grb_info_hdu = xBinTableGRBmain(data)
    hdu_list = fits.HDUList([primary_hdu, grb_info_hdu])
    hdu_list.info()
    logger.info('Writing GRB main infos table to %s...' % outfile)
    hdu_list.writeto(outfile, clobber=True)
    logger.info('Done.')
def parse(file_path, emin=1., emax=15., flux_scale=4.3576):
    """Parse the input file with the complete spectral and polarization model.
    """
    logger.info('Parsing input file %s...' % file_path)
    energy, flux, angle, degree = numpy.loadtxt(file_path, unpack=True)
    flux *= flux_scale
    _mask = (energy >= emin)*(energy <= emax)
    return energy[_mask], flux[_mask], angle[_mask], degree[_mask]
Example #23
0
File: rmf.py Project: pabell/ximpol
 def __init__(self, mrf_file_path):
     """Constructor.
     """
     logger.info('Reading energy dispersion data from %s...' %
                 mrf_file_path)
     self.hdu_list = fits.open(mrf_file_path)
     self.hdu_list.info()
     self.matrix = xEnergyDispersionMatrix(self.hdu_list['MATRIX'])
     self.ebounds = xEnergyDispersionBounds(self.hdu_list['EBOUNDS'])
Example #24
0
 def __init__(self, file_path):
     """Constructor.
     """
     assert (file_path.endswith('.fits'))
     logger.info('Opening input event file %s...' % file_path)
     self.hdu_list = fits.open(file_path)
     self.hdu_list.info()
     self.event_data = self.hdu_list['EVENTS'].data
     self.roi_table = self.build_roi_table()
Example #25
0
def parse(file_path, emin=1., emax=10.):
    """Parse the input file with the complete spectral and polarization model.
    """
    logger.info('Parsing input file %s...' % file_path)
    energy, flux, degree, angle = numpy.loadtxt(file_path, unpack=True,
                                                        usecols = (0,1,5,6))
    angle += 90.
    _mask = (energy >= emin)*(energy <= emax)
    return energy[_mask], flux[_mask], degree[_mask], angle[_mask]
Example #26
0
 def __init__(self, file_path):
     """Constructor.
     """
     assert(file_path.endswith('.fits'))
     logger.info('Opening input event file %s...' % file_path)
     self.hdu_list = fits.open(file_path)
     self.hdu_list.info()
     self.event_data = self.hdu_list['EVENTS'].data
     self.roi_table = self.build_roi_table()
Example #27
0
 def fit_bin(self, i):
     """Fit the azimuthal distribution for the i-th energy slice.
     """
     hist = (self.phi_y[i], self.phi_binning, None)
     _fit_results = xAzimuthalResponseGenerator.fit_histogram(hist)
     _fit_results.set_polarization(self.modf(self.emean[i]))
     logger.info(_fit_results)
     self.fit_results.append(_fit_results)
     return _fit_results
Example #28
0
 def fit_bin(self, i):
     """Fit the azimuthal distribution for the i-th energy slice.
     """
     hist = (self.phi_y[i], self.phi_binning, None)
     _fit_results = xAzimuthalResponseGenerator.fit_histogram(hist)
     _fit_results.set_polarization(self.modf(self.emean[i]))
     logger.info(_fit_results)
     self.fit_results.append(_fit_results)
     return _fit_results
Example #29
0
def cleanup_dist():
    """Cleanup the distribution folder.
    """
    if os.path.exists(XIMPOL_DIST):
        logger.info('Removing %s altogether...' % XIMPOL_DIST)
        shutil.rmtree(XIMPOL_DIST)
    filePath = os.path.join(XIMPOL_ROOT, 'MANIFEST')
    if os.path.exists(filePath):
        logger.info('Removing %s...' % filePath)
        os.remove(filePath)
Example #30
0
def cleanup(folder_path, patterns = ['*~', '*.pyc', '*.pyo']):
    """Cleanup a folder.
    """
    logger.info('Cleaning up folder %s...' % folder_path)
    fileList = []
    for pattern in patterns:
        fileList += glob.glob(os.path.join(folder_path, pattern))
    for filePath in fileList:
        logger.info('Removing %s...' % filePath)
        os.remove(filePath)
Example #31
0
def run():
    PIPELINE.xpobssim(configfile=CFG_FILE, duration=SIM_DURATION,
                      outfile=EVT_FILE_PATH)
    pha1_file_path = PIPELINE.xpbin(EVT_FILE_PATH, algorithm='PHA1')
    spec_fitter = PIPELINE.xpxspec(pha1_file_path)
    (index, index_err), (norm, norm_err) = spec_fitter.fit_parameters()
    logger.info('Fitted PL norm = %.4f +- %4f (input = %.4f)' %\
                (norm, norm_err, PL_NORM))
    logger.info('Fitted PL index = %.4f +- %4f (input = %.4f)' %\
                (index, index_err, PL_INDEX))
Example #32
0
def run(save_plots=False):
    """Run all the tasks.
    """
    if os.path.exists(ANALYSIS_FILE_PATH):
        logger.info('%s exists, delete it if you want to recreate it.' %\
                    ANALYSIS_FILE_PATH)
    else:
        generate()
        prepare()
        analyze()
    plot(save_plots)
Example #33
0
def rmdir(dir_path):
    """ Remove an entire (empty or non empty) folder.
    """
    logger.info('About to remove folder %s...' % dir_path)
    try:
        shutil.rmtree(dir_path)
        logger.info('Folder succesfully removed.')
        status = 0
    except Exception as e:
        logger.error('Could not remove folder (%s)' % e)
        status = 1
    return status
Example #34
0
def run(save_plots=False):
    """Run all the tasks.
    """
    if os.path.exists(ANALYSIS_FILE_PATH):
        logger.info('%s exists, delete it if you want to recreate it.' %\
                    ANALYSIS_FILE_PATH)
    else:
        calculate_mdp()
        generate()
        prepare()
        analyze()
    plot(save_plots)
Example #35
0
 def __init__(self, file_path, build_cdf=True):
     """Constructor.
     """
     logger.info('Reading FITS image from %s...' % file_path)
     self.hdu_list = fits.open(file_path)
     self.hdu_list.info()
     self.wcs = wcs.WCS(self.hdu_list['PRIMARY'].header)
     self.data = self.hdu_list['PRIMARY'].data.transpose()
     self.vmin = None
     self.vmax = None
     if build_cdf:
         self.cdf = self.build_cdf()
Example #36
0
File: img.py Project: pabell/ximpol
 def __init__(self, file_path, build_cdf=True):
     """Constructor.
     """
     logger.info('Reading FITS image from %s...' % file_path)
     self.hdu_list = fits.open(file_path)
     self.hdu_list.info()
     self.wcs = wcs.WCS(self.hdu_list['PRIMARY'].header)
     self.data = self.hdu_list['PRIMARY'].data.transpose()
     self.vmin = None
     self.vmax = None
     if build_cdf:
         self.build_cdf()
Example #37
0
def rmdir(dir_path):
    """ Remove an entire (empty or non empty) folder.
    """
    logger.info('About to remove folder %s...' % dir_path)
    try:
        shutil.rmtree(dir_path)
        logger.info('Folder succesfully removed.')
        status = 0
    except Exception as e:
        logger.error('Could not remove folder (%s)' %  e)
        status = 1
    return status
Example #38
0
 def save_plot(self, outfile, arg_list=[], device='/cps', title=None,
               xaxis='keV', logx=True):
     """Save the plot to the outfile directory. The default format is '.ps'.
     """
     xspec.Plot.device = outfile + device
     xspec.Plot.xAxis = xaxis
     xspec.Plot.xLog = logx
     if title is not None:
         xspec.Plot.addCommand('label top '+ title)
     args = ', '.join(x for x in arg_list)
     logger.info('Saving the plot to %s...' %outfile)
     xspec.Plot(args)
Example #39
0
def parse_spectral_model(file_name, emin=0.9, emax=11.):
    """Parse the input file with the spectral point.
    """
    file_path = os.path.join(XIMPOL_CONFIG, 'ascii', file_name)
    logger.info('Parsing input file %s...' % file_path)
    _energy, _flux, _fluxerr = numpy.loadtxt(file_path, unpack=True)
    _mask = (_energy >= emin)*(_energy <= emax)
    _energy = _energy[_mask]
    _flux = _flux[_mask]
    fmt = dict(xname='Energy', xunits='keV', yname='Flux',
               yunits='cm$^{-2}$ s$^{-1}$ keV$^{-1}$')
    return xInterpolatedUnivariateSplineLinear(_energy, _flux, **fmt)
Example #40
0
def select_and_bin(radius = RADIUS):
    
    for i,ra in enumerate(_ra):
        for j,dec in enumerate(_dec):
                   
            logger.info('Analyzing region at ra = %s, dec = %s' % (ra, dec))
            sel_file_path = get_sel_file_path(i,j)
            mcube_file_path = get_mcube_file_path(i,j)
            logger.info('Going to use %s and %s for the outputfiles..'%(sel_file_path,mcube_file_path))
            pipeline.xpselect(evt_file_path, ra=ra, dec=dec, rad=radius,
                              outfile=sel_file_path)
            pipeline.xpbin(sel_file_path, algorithm='MCUBE', ebinalg='LIST',
                           ebinning=E_BINNING, outfile = mcube_file_path)
Example #41
0
File: mrf.py Project: pabell/ximpol
 def __init__(self, mrf_file_path):
     """Constructor.
     """
     logger.info('Reading modulation factor data from %s...' % mrf_file_path)
     self.hdu_list = fits.open(mrf_file_path)
     self.hdu_list.info()
     _data = self.hdu_list['MODFRESP'].data
     _x = 0.5*(_data.field('ENERG_LO') + _data.field('ENERG_HI'))
     _y = _data.field('MODFRESP')
     fmt = dict(xname='Energy', xunits='keV', yname='Modulation factor',
                optimize=True, tolerance=1e-4)
     xInterpolatedUnivariateSplineLinear.__init__(self, _x, _y, **fmt)
     self.generator = xAzimuthalResponseGenerator()
def run(save_plots=False):
    """Run all the tasks.
    """
    if os.path.exists(ANALYSIS_FILE_PATH):
        logger.info('%s exists, delete it if you want to recreate it.' %\
                    ANALYSIS_FILE_PATH)
    else:
        generate()
        global PHASE_BINNING
        PHASE_BINNING = _phase_binning()
        prepare()
        analyze()
    plot(save_plots)
Example #43
0
def parse_spectral_model(file_name, emin=0.5, emax=15.):
    """Parse the input file with the spectral point.
    """
    file_path = os.path.join(XIMPOL_CONFIG, 'ascii', file_name)
    logger.info('Parsing input file %s...' % file_path)
    _energy, _flux = numpy.loadtxt(file_path, delimiter=',', unpack=True)
    _mask = (_energy >= emin)*(_energy <= emax)
    _energy = _energy[_mask]
    _flux = _flux[_mask]
    _flux /= _energy**2.
    fmt = dict(xname='Energy', xunits='keV', yname='Flux',
               yunits='cm$^{-2}$ s$^{-1}$ keV$^{-1}$')
    return xInterpolatedUnivariateSplineLinear(_energy, _flux, **fmt)
Example #44
0
def mv(source, dest):
    """Move a file.

    Return 0 upon succesfull operation, 1 otherwise.
    """
    logger.info('About to move %s to %s...' % (source, dest))
    try:
        shutil.move(source, dest)
        logger.info('File succesfully copied.')
        status = 0
    except Exception as e:
        logger.error('Could not move file (%s)' % e)
        status = 1
    return status
Example #45
0
def select_and_bin():
    """
    """
    logger.info('Creating the mapcube for the entire source...')
    pipeline.xpbin(evt_file_path,
                   algorithm='MCUBE',
                   ebinalg='LIST',
                   ebinning=E_BINNING)
    logger.info('Opening region file %s...' % reg_file_path)
    regions = pyregion.open(reg_file_path)
    logger.info('Found %d regions...' % len(regions))
    for i, region in enumerate(regions):
        ra, dec, rad = region.coord_list
        rad *= 60.
        logger.info('Analyzing region at ra = %s, dec = %s' % (ra, dec))
        sel_file_path = get_sel_file_path(i)
        mcube_file_path = get_mcube_file_path(i)
        pipeline.xpselect(evt_file_path,
                          ra=ra,
                          dec=dec,
                          rad=rad,
                          outfile=sel_file_path)
        pipeline.xpbin(sel_file_path,
                       algorithm='MCUBE',
                       ebinalg='LIST',
                       ebinning=E_BINNING,
                       outfile=mcube_file_path)
Example #46
0
def optimize_grid_linear(x, y, tolerance=1e-4):
    """Optimize a pair of (x, y) arrays for the corresponding spline
    definition.

    This loops over the input arrays and removes unnecessary data points
    to minimize the length of the arrays necessary to the spline definition.

    Args
    ----
    x : array
        The input x-array.

    y : array
        The input y-array.

    tolerance : float
        The maximum relative difference between the generic yi value and the\
        estrapolation of the two previous optimized data points for the point\
        i to be removed.
    """
    assert (len(x) == len(y))
    logger.info('Optimizing grid with %d starting points...' % len(x))
    # Start a new series with the first two points of the input arrays.
    _x = [x[0], x[1]]
    _y = [y[0], y[1]]
    # Loop over the points 3 ... (N - 1).
    for i, (_xi, _yi) in enumerate(zip(x, y)[2:-1]):
        # Extrapolate the last two points of the new series to xi and
        # see how far we are from the actual yi.
        delta = interpolate(_x[-2], _y[-2], _x[-1], _y[-1], _xi) - _yi
        if abs(delta / _yi) > tolerance:
            # If the difference is larger than the tolerance, add a point.
            # (This has the drawback that we tend to add pairs of point at
            # each change of slope.)
            _x.append(_xi)
            _y.append(_yi)
            # Interpolate the points last and (last - 2) to (last - 1).
            delta = interpolate(_x[-3], _y[-3], _x[-1], _y[-1],
                                _x[-2]) - _y[-2]
            if abs(delta / _y[-2]) < tolerance:
                # If the penultimate point was not necessary, remove it.
                _x.remove(_x[-2])
                _y.remove(_y[-2])
    # Append the last point of the original array to the list.
    _x.append(x[-1])
    _y.append(y[-1])
    _x, _y = numpy.array(_x), numpy.array(_y)
    logger.info('Done, %d points remaining.' % len(_x))
    return _x, _y
Example #47
0
def mkdir(dir_path):
    """Create a directory (unless it already exists).

    Return 0 upon succesfull operation, 1 otherwise.
    """
    if not os.path.exists(dir_path):
        logger.info('About to create folder %s...' % dir_path)
        try:
            os.makedirs(dir_path)
            logger.info('Folder succesfully created.')
            status = 0
        except Exception as e:
            logger.error('Could not create folder (%s)' % e)
            status = 1
        return status
Example #48
0
def xpselect(file_path, **kwargs):
    """Application for data subselection.

    We want to (loosely) model this on
    http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtselect.txt
    """
    assert(file_path.endswith('.fits'))
    event_select = xEventSelect(file_path, **kwargs)
    outfile = event_select.get('outfile')
    if os.path.exists(outfile) and not event_select.get('clobber'):
        logger.info('Output file %s already exists.' % outfile)
        logger.info('Remove the file or set "clobber = True" to overwite it.')
    else:
        event_select.select()
    return outfile
Example #49
0
def distsrc():
    """ Create a plain source distribution.
    """
    tag, buildDate = version_info()
    logger.info('Creating plain source distribution...')
    distDir = os.path.join(XIMPOL_DIST, 'src')
    srcLogFilePath = 'src.log'
    # Create the distribution.
    cmd('python setup.py sdist --dist-dir=%s --prune' % distDir,
        verbose=False,
        logFilePath=srcLogFilePath)
    # Cleanup.
    rm(srcLogFilePath)
    rm(os.path.join(XIMPOL_ROOT, 'MANIFEST'))
    logger.info('Done.')
Example #50
0
def xpbin(file_path, **kwargs):
    """Application to bin the data.

    We want to (loosely) model this on
    http://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/help/gtbin.txt
    """
    assert (file_path.endswith('.fits'))
    event_binning = BIN_ALG_DICT[kwargs['algorithm']](file_path, **kwargs)
    outfile = event_binning.get('outfile')
    if os.path.exists(outfile) and not event_binning.get('clobber'):
        logger.info('Output file %s already exists.' % outfile)
        logger.info('Remove the file or set "clobber = True" to overwite it.')
    else:
        event_binning.bin_()
    return outfile
Example #51
0
    def write_fits(self, file_path, simulation_info):
        """Write the event list and associated ancillary information to file.

        Arguments
        ---------
        file_path : str
            The path to the output file.

        simulation_info :
            A generic container with all the relevant information about the
            simulation.

        Warning
        -------
        The information about the detector and telescope should be in the
        primary header of the IRF tables, and that's where we should be
        retrieving it from. (See issue #49.)
        """
        primary_hdu = xPrimaryHDU()
        roi_model = simulation_info.roi_model
        irf_name = simulation_info.irf_name
        ebounds_header = simulation_info.edisp.hdu_list['EBOUNDS'].header
        gti_list = simulation_info.gti_list
        keywords = [('ROIRA', roi_model.ra,
                     'right ascension of the ROI center'),
                    ('ROIDEC', roi_model.dec, 'declination of the ROI center'),
                    ('EQUINOX', 2000., 'equinox for RA and DEC'),
                    ('IRFNAME', irf_name, 'name of the IRFs used for the MC'),
                    ('TELESCOP', ebounds_header['TELESCOP']),
                    ('INSTRUME', ebounds_header['INSTRUME']),
                    ('DETNAM', ebounds_header['DETNAM']),
                    ('DETCHANS', ebounds_header['DETCHANS'])]
        primary_hdu.setup_header(keywords)
        data = [self[name] for name in\
                xBinTableHDUMonteCarloEvents.spec_names()]
        event_hdu = xBinTableHDUMonteCarloEvents(data)
        _start = numpy.array([gti[0] for gti in gti_list])
        _stop = numpy.array([gti[1] for gti in gti_list])
        gti_hdu = xBinTableHDUGTI([_start, _stop])
        _src_id = numpy.array([src.identifier for src in roi_model.values()])
        _src_name = numpy.array([src.name for src in roi_model.values()])
        roi_hdu = xBinTableHDURoiTable([_src_id, _src_name])
        hdu_list = fits.HDUList([primary_hdu, event_hdu, gti_hdu, roi_hdu])
        hdu_list.info()
        hdu_list.writeto(file_path, clobber=True)
        logger.info('Event list written to %s...' % file_path)
Example #52
0
 def bin_(self):
     """Overloaded method.
     """
     from ximpol.irf import load_mrf
     from ximpol.irf.mrf import mdp99
     modf = load_mrf(self.event_file.irf_name())
     evt_header = self.event_file.hdu_list['PRIMARY'].header
     if self.get('mc'):
         energy = self.event_data['MC_ENERGY']
     else:
         energy = self.event_data['ENERGY']
     phi = self.event_data['PE_ANGLE']
     phi_hist, xedges, yedges = numpy.histogram2d(energy,
                                                  phi,
                                                  bins=self.make_binning())
     primary_hdu = self.build_primary_hdu()
     emin, emax = xedges[:-1], xedges[1:]
     emean = []
     effmu = []
     ncounts = []
     mdp = []
     for _emin, _emax in zip(emin, emax):
         _mask = (energy > _emin) * (energy < _emax)
         _energy = energy[_mask]
         _emean = numpy.mean(_energy)
         _effmu = modf.weighted_average(_energy)
         _ncounts = len(_energy)
         _mdp = mdp99(_effmu, _ncounts)
         emean.append(_emean)
         effmu.append(_effmu)
         ncounts.append(_ncounts)
         mdp.append(_mdp)
     data = [emin, emax, emean, effmu, ncounts, mdp, phi_hist]
     xBinTableHDUMCUBE.set_phi_spec(self.get('phibins'))
     mcube_hdu = xBinTableHDUMCUBE(data)
     mcube_hdu.setup_header(self.event_file.primary_keywords())
     gti_hdu = self.event_file.hdu_list['GTI']
     hdu_list = fits.HDUList([primary_hdu, mcube_hdu, gti_hdu])
     hdu_list.info()
     logger.info('Writing binned MCUBE data to %s...' % self.get('outfile'))
     hdu_list.writeto(self.get('outfile'), clobber=True)
     logger.info('Done.')
Example #53
0
 def bin_(self):
     """Overloaded method.
     """
     evt_header = self.event_file.hdu_list['PRIMARY'].header
     counts, edges = numpy.histogram(self.event_data['PHASE'],
                                     bins=self.make_binning())
     primary_hdu = self.build_primary_hdu()
     data = [
         self.bin_centers(edges),
         self.bin_widths(edges), counts,
         numpy.sqrt(counts)
     ]
     rate_hdu = xBinTableHDUPHASG(data)
     rate_hdu.setup_header(self.event_file.primary_keywords())
     gti_hdu = self.event_file.hdu_list['GTI']
     hdu_list = fits.HDUList([primary_hdu, rate_hdu, gti_hdu])
     hdu_list.info()
     logger.info('Writing binned PHASG data to %s...' % self.get('outfile'))
     hdu_list.writeto(self.get('outfile'), clobber=True)
     logger.info('Done.')
Example #54
0
 def __init__(self,
              x,
              y,
              xname=None,
              xunits=None,
              yname=None,
              yunits=None,
              optimize=False,
              tolerance=1e-4):
     """ Constructor.
     """
     if optimize:
         oldx, oldy = x, y
         x, y = optimize_grid_linear(x, y, tolerance)
     xInterpolatedUnivariateSpline.__init__(self, x, y, None, [None, None],
                                            1, xname, xunits, yname, yunits)
     if optimize:
         dist = self.dist(oldx, oldy)
         logger.info('Relative (max/ave) dist. to original array: %e/%e' %\
                     (dist.max(), dist.sum()/len(dist)))
Example #55
0
def cp(source, dest, create_tree=False):
    """Copy a file.

    Return 0 upon succesfull operation, 1 otherwise.
    """
    logger.info('About to copy %s to %s...' % (source, dest))
    destFolder = os.path.dirname(dest)
    if not os.path.exists(destFolder) and createTree:
        mkdir(destFolder)
    try:
        if os.path.isdir(source):
            shutil.copytree(source, dest)
        else:
            shutil.copy(source, dest)
        logger.info('File succesfully copied.')
        status = 0
    except Exception as e:
        logger.error('Could not copy file (%s)' % e)
        status = 1
    return status
Example #56
0
def make_psf(irf_name):
    """Write the XIPE PSF parameters.
    """
    logger.info('Creating XIPE effective area fits file...')
    output_file_name = '%s.psf' % irf_name
    output_file_path = os.path.join(XIMPOL_IRF, 'fits', output_file_name)
    if os.path.exists(output_file_path):
        rm(output_file_path)
    logger.info('Creating PRIMARY HDU...')
    primary_hdu = xPrimaryHDU('ximpol', XIPE_KEYWORDS, XIPE_COMMENTS)
    print(repr(primary_hdu.header))
    logger.info('Creating PSF HDU...')
    data = PSF_PARAMETERS
    psf_hdu = xBinTableHDUPSF(data, [], XIPE_COMMENTS)
    print(repr(psf_hdu.header))
    logger.info('Writing output file %s...' % output_file_path)
    hdulist = fits.HDUList([primary_hdu, psf_hdu])
    hdulist.info()
    hdulist.writeto(output_file_path)
    logger.info('Done.')
Example #57
0
def save_current_figure(file_name,
                        folder=XIMPOL_DOC_FIGURES,
                        clear=True,
                        show=False):
    """Save the current matplotlib figure in `XIMPOL_DOC_FIGURES`.

    Arguments
    ---------
    file_name : string
        The name of the output file.

    clear : bool
        If `True`, the current image is cleared after the fact.
    """
    file_path = os.path.join(folder, file_name)
    logger.info('Saving current figure to %s...' % file_path)
    pyplot.savefig(file_path, transparent=True)
    if show:
        pyplot.show()
    if clear:
        pyplot.clf()