Example #1
0
    def __init__(
        self,
        d_feat: int = 6,
        embed_dim: List[
            super_core.IntSpaceType] = DefaultSearchSpace["embed_dim"],
        num_heads: List[
            super_core.IntSpaceType] = DefaultSearchSpace["num_heads"],
        mlp_hidden_multipliers: List[
            super_core.
            IntSpaceType] = DefaultSearchSpace["mlp_hidden_multipliers"],
        qkv_bias: bool = DefaultSearchSpace["qkv_bias"],
        pos_drop: float = DefaultSearchSpace["pos_drop"],
        other_drop: float = DefaultSearchSpace["other_drop"],
        max_seq_len: int = 65,
    ):
        super(SuperTransformer, self).__init__()
        self._embed_dim = embed_dim
        self._num_heads = num_heads
        self._mlp_hidden_multipliers = mlp_hidden_multipliers

        # the stem part
        self.input_embed = super_core.SuperAlphaEBDv1(d_feat, embed_dim)
        self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim))
        self.pos_embed = super_core.SuperPositionalEncoder(
            d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop)
        # build the transformer encode layers -->> check params
        _assert_types(num_heads, (tuple, list))
        _assert_types(mlp_hidden_multipliers, (tuple, list))
        assert len(num_heads) == len(
            mlp_hidden_multipliers), "{:} vs {:}".format(
                len(num_heads), len(mlp_hidden_multipliers))
        # build the transformer encode layers -->> backbone
        layers = []
        for num_head, mlp_hidden_multiplier in zip(num_heads,
                                                   mlp_hidden_multipliers):
            layer = super_core.SuperTransformerEncoderLayer(
                embed_dim,
                num_head,
                qkv_bias,
                mlp_hidden_multiplier,
                other_drop,
            )
            layers.append(layer)
        self.backbone = super_core.SuperSequential(*layers)

        # the regression head
        self.head = super_core.SuperSequential(
            super_core.SuperLayerNorm1D(embed_dim),
            super_core.SuperLinear(embed_dim, 1))
        trunc_normal_(self.cls_token, std=0.02)
        self.apply(self._init_weights)
    def test_super_simple_norm(self):
        out_features = spaces.Categorical(12, 24, 36)
        bias = spaces.Categorical(True, False)
        model = super_core.SuperSequential(
            super_core.SuperSimpleNorm(5, 0.5),
            super_core.SuperLinear(10, out_features, bias=bias),
        )
        print("The simple super module is:\n{:}".format(model))
        model.apply_verbose(True)

        print(model.super_run_type)
        self.assertTrue(model[1].bias)

        inputs = torch.rand(20, 10)
        print("Input shape: {:}".format(inputs.shape))
        outputs = model(inputs)
        self.assertEqual(tuple(outputs.shape), (20, 36))

        abstract_space = model.abstract_search_space
        abstract_space.clean_last()
        abstract_child = abstract_space.random()
        print("The abstract searc space:\n{:}".format(abstract_space))
        print("The abstract child program:\n{:}".format(abstract_child))

        model.set_super_run_type(super_core.SuperRunMode.Candidate)
        model.apply_candidate(abstract_child)

        output_shape = (20, abstract_child["1"]["_out_features"].value)
        outputs = model(inputs)
        self.assertEqual(tuple(outputs.shape), output_shape)
Example #3
0
def _create_stel(input_dim, output_dim, order):
    return super_core.SuperSequential(
        super_core.SuperLinear(input_dim, output_dim),
        super_core.SuperTransformerEncoderLayer(
            output_dim,
            num_heads=spaces.Categorical(2, 4, 6),
            mlp_hidden_multiplier=spaces.Categorical(1, 2, 4),
            order=order,
        ),
    )
Example #4
0
def test_super_sequential_v1():
    model = super_core.SuperSequential(
        super_core.SuperSimpleNorm(1, 1),
        torch.nn.ReLU(),
        super_core.SuperLeakyReLU(),
        super_core.SuperLinear(10, 10),
        super_core.SuperReLU(),
    )
    inputs = torch.rand(10, 10)
    print(model)
    outputs = model(inputs)

    abstract_search_space = model.abstract_search_space
    print(abstract_search_space)
def test_super_sequential(batch, seq_dim, input_dim):
    out1_dim = spaces.Categorical(12, 24, 36)
    out2_dim = spaces.Categorical(24, 36, 48)
    out3_dim = spaces.Categorical(36, 72, 100)
    layer1 = _create_stel(input_dim, out1_dim)
    layer2 = _create_stel(out1_dim, out2_dim)
    layer3 = _create_stel(out2_dim, out3_dim)
    model = super_core.SuperSequential(layer1, layer2, layer3)
    print(model)
    model.apply_verbose(True)
    inputs = torch.rand(batch, seq_dim, input_dim)
    abstract_child, outputs = _internal_func(inputs, model)
    output_shape = (
        batch,
        seq_dim,
        out3_dim.abstract(reuse_last=True).random(reuse_last=True).value,
    )
    assert tuple(outputs.shape) == output_shape
Example #6
0
 def test_transformer_encoder(self, input_dim):
     output_dim = spaces.Categorical(12, 24, 36)
     model = super_core.SuperSequential(
         super_core.SuperLinear(input_dim, output_dim),
         super_core.SuperTransformerEncoderLayer(
             output_dim,
             num_heads=spaces.Categorical(2, 4, 6),
             mlp_hidden_multiplier=spaces.Categorical(1, 2, 4),
         ),
     )
     print(model)
     model.apply_verbose(True)
     inputs = torch.rand(4, 20, input_dim)
     abstract_child, outputs = self._internal_func(inputs, model)
     output_shape = (
         4,
         20,
         output_dim.abstract(reuse_last=True).random(reuse_last=True).value,
     )
     self.assertEqual(tuple(outputs.shape), output_shape)