Example #1
0
  def setUp(self):
    # Seeding
    numpy.random.seed(2)
    random.seed(2)
    layer_dim = 64
    xnmt.events.clear()
    ParamManager.init_param_col()
    self.segment_encoder_bilstm = BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim)
    self.segment_composer = SumComposer()

    self.src_reader = CharFromWordTextReader(vocab=Vocab(vocab_file="examples/data/head.ja.charvocab"))
    self.trg_reader = PlainTextReader(vocab=Vocab(vocab_file="examples/data/head.en.vocab"))
    self.loss_calculator = FeedbackLoss(child_loss=MLELoss(), repeat=5)

    baseline = Linear(input_dim=layer_dim, output_dim=1)
    policy_network = Linear(input_dim=layer_dim, output_dim=2)
    self.poisson_prior = PoissonPrior(mu=3.3)
    self.eps_greedy = EpsilonGreedy(eps_prob=0.0, prior=self.poisson_prior)
    self.conf_penalty = ConfidencePenalty()
    self.policy_gradient = PolicyGradient(input_dim=layer_dim,
                                          output_dim=2,
                                          baseline=baseline,
                                          policy_network=policy_network,
                                          z_normalization=True,
                                          conf_penalty=self.conf_penalty)
    self.length_prior = PoissonLengthPrior(lmbd=3.3, weight=1)
    self.segmenting_encoder = SegmentingSeqTransducer(
      embed_encoder = self.segment_encoder_bilstm,
      segment_composer =  self.segment_composer,
      final_transducer = BiLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim),
      policy_learning = self.policy_gradient,
      eps_greedy = self.eps_greedy,
      length_prior = self.length_prior,
    )

    self.model = DefaultTranslator(
      src_reader=self.src_reader,
      trg_reader=self.trg_reader,
      src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
      encoder=self.segmenting_encoder,
      attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim),
      trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
      decoder=AutoRegressiveDecoder(input_dim=layer_dim,
                                    rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim,
                                                             decoder_input_dim=layer_dim, yaml_path="decoder"),
                                    transform=AuxNonLinear(input_dim=layer_dim, output_dim=layer_dim,
                                                           aux_input_dim=layer_dim),
                                    scorer=Softmax(vocab_size=100, input_dim=layer_dim),
                                    trg_embed_dim=layer_dim,
                                    bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
    )
    event_trigger.set_train(True)

    self.layer_dim = layer_dim
    self.src_data = list(self.model.src_reader.read_sents("examples/data/head.ja"))
    self.trg_data = list(self.model.trg_reader.read_sents("examples/data/head.en"))
    my_batcher = batchers.TrgBatcher(batch_size=3)
    self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data)
    dy.renew_cg(immediate_compute=True, check_validity=True)
Example #2
0
    def setUp(self):
        # Seeding
        numpy.random.seed(2)
        random.seed(2)
        layer_dim = 32
        xnmt.events.clear()
        ParamManager.init_param_col()

        edge_vocab = Vocab(vocab_file="examples/data/parse/head.en.edge_vocab")
        node_vocab = Vocab(vocab_file="examples/data/parse/head.en.node_vocab")
        value_vocab = Vocab(vocab_file="examples/data/head.en.vocab")

        self.src_reader = input_readers.PlainTextReader(vocab=value_vocab)
        self.trg_reader = input_readers.CoNLLToRNNGActionsReader(
            surface_vocab=value_vocab,
            nt_vocab=node_vocab,
            edg_vocab=edge_vocab)

        self.layer_dim = layer_dim
        self.src_data = list(
            self.src_reader.read_sents("examples/data/head.en"))
        self.trg_data = list(
            self.trg_reader.read_sents("examples/data/parse/head.en.conll"))
        self.loss_calculator = MLELoss()
        self.head_composer = composer.DyerHeadComposer(
            fwd_combinator=UniLSTMSeqTransducer(input_dim=layer_dim,
                                                hidden_dim=layer_dim),
            bwd_combinator=UniLSTMSeqTransducer(input_dim=layer_dim,
                                                hidden_dim=layer_dim),
            transform=AuxNonLinear(input_dim=layer_dim,
                                   aux_input_dim=layer_dim,
                                   output_dim=layer_dim))

        self.model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=LookupEmbedder(emb_dim=layer_dim,
                                        vocab_size=len(value_vocab)),
            encoder=IdentitySeqTransducer(),
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            decoder=RNNGDecoder(
                input_dim=layer_dim,
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim),
                transform=AuxNonLinear(input_dim=layer_dim,
                                       output_dim=layer_dim,
                                       aux_input_dim=layer_dim),
                bridge=NoBridge(dec_dim=layer_dim, dec_layers=1),
                graph_reader=self.trg_reader,
                head_composer=self.head_composer))
        event_trigger.set_train(True)

        my_batcher = batchers.TrgBatcher(batch_size=1)
        self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data)
        dy.renew_cg(immediate_compute=True, check_validity=True)
Example #3
0
    def setUp(self):
        # Seeding
        numpy.random.seed(2)
        random.seed(2)
        layer_dim = 4
        xnmt.events.clear()
        ParamManager.init_param_col()
        self.segment_composer = SumComposer()
        self.src_reader = CharFromWordTextReader(vocab=Vocab(
            vocab_file="examples/data/head.ja.charvocab"))
        self.trg_reader = PlainTextReader(vocab=Vocab(
            vocab_file="examples/data/head.en.vocab"))
        self.loss_calculator = FeedbackLoss(child_loss=MLELoss(), repeat=5)
        self.segmenting_encoder = SegmentingSeqTransducer(
            segment_composer=self.segment_composer,
            final_transducer=BiLSTMSeqTransducer(input_dim=layer_dim,
                                                 hidden_dim=layer_dim),
        )

        self.model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            encoder=self.segmenting_encoder,
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            decoder=AutoRegressiveDecoder(
                input_dim=layer_dim,
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim,
                                         yaml_path="decoder"),
                transform=AuxNonLinear(input_dim=layer_dim,
                                       output_dim=layer_dim,
                                       aux_input_dim=layer_dim),
                scorer=Softmax(vocab_size=100, input_dim=layer_dim),
                embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
                bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
        )
        event_trigger.set_train(True)

        self.layer_dim = layer_dim
        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))
        my_batcher = batchers.TrgBatcher(batch_size=3)
        self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data)
        dy.renew_cg(immediate_compute=True, check_validity=True)
Example #4
0
    def setUp(self):
        # Seeding
        numpy.random.seed(2)
        random.seed(2)
        layer_dim = 32
        xnmt.events.clear()
        ParamManager.init_param_col()

        self.src_reader = PlainTextReader(vocab=Vocab(
            vocab_file="test/data/head.ja.vocab"))
        self.trg_reader = PlainTextReader(vocab=Vocab(
            vocab_file="test/data/head.en.vocab"))
        self.layer_dim = layer_dim
        self.src_data = list(self.src_reader.read_sents("test/data/head.ja"))
        self.trg_data = list(self.trg_reader.read_sents("test/data/head.en"))
        self.input_vocab_size = len(self.src_reader.vocab.i2w)
        self.output_vocab_size = len(self.trg_reader.vocab.i2w)
        self.loss_calculator = MLELoss()

        self.model = SimultaneousTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(emb_dim=layer_dim,
                                            vocab_size=self.input_vocab_size),
            encoder=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim),
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            decoder=AutoRegressiveDecoder(
                input_dim=layer_dim,
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim,
                                         yaml_path="decoder"),
                transform=AuxNonLinear(input_dim=layer_dim,
                                       output_dim=layer_dim,
                                       aux_input_dim=layer_dim),
                scorer=Softmax(vocab_size=self.output_vocab_size,
                               input_dim=layer_dim),
                embedder=SimpleWordEmbedder(emb_dim=layer_dim,
                                            vocab_size=self.output_vocab_size),
                bridge=NoBridge(dec_dim=layer_dim, dec_layers=1)),
        )
        event_trigger.set_train(True)

        my_batcher = batchers.TrgBatcher(batch_size=3)
        self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data)
        dy.renew_cg(immediate_compute=True, check_validity=True)
Example #5
0
  def setUp(self):
    # Seeding
    numpy.random.seed(2)
    random.seed(2)
    layer_dim = 32
    xnmt.events.clear()
    ParamManager.init_param_col()
   
    src_vocab = Vocab(vocab_file="examples/data/head.ja.vocab")
    self.src_reader = CompoundReader(readers=[
      PlainTextReader(vocab=src_vocab),
      SimultActionTextReader()
    ], vocab=src_vocab)
    
    
    self.trg_reader = PlainTextReader(vocab=Vocab(vocab_file="examples/data/head.en.vocab"))
    self.layer_dim = layer_dim
    self.src_data = list(self.src_reader.read_sents(["examples/data/head.ja", "examples/data/simult/head.jaen.actions"]))
    self.trg_data = list(self.trg_reader.read_sents("examples/data/head.en"))
    self.input_vocab_size = len(self.src_reader.vocab.i2w)
    self.output_vocab_size = len(self.trg_reader.vocab.i2w)
    self.loss_calculator = loss_calculators.MLELoss()
    
    self.model = SimultaneousTranslator(
      src_reader=self.src_reader,
      trg_reader=self.trg_reader,
      src_embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=self.input_vocab_size),
      encoder=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim),
      attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim),
      decoder=AutoRegressiveDecoder(input_dim=layer_dim,
                                    rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim,
                                                             decoder_input_dim=layer_dim, yaml_path="decoder"),
                                    transform=AuxNonLinear(input_dim=layer_dim, output_dim=layer_dim,
                                                           aux_input_dim=layer_dim),
                                    scorer=Softmax(vocab_size=self.output_vocab_size, input_dim=layer_dim),
                                    embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=self.output_vocab_size),
                                    bridge=NoBridge(dec_dim=layer_dim, dec_layers=1)),
      policy_network = network.PolicyNetwork(transforms.MLP(2*self.layer_dim, self.layer_dim, 2)),
      policy_train_oracle=True,
      policy_test_oracle=True
    )
    event_trigger.set_train(True)
    

    my_batcher = batchers.TrgBatcher(batch_size=3)
    self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data)
    dy.renew_cg(immediate_compute=True, check_validity=True)
Example #6
0
    def test_py_lstm_mask(self):
        layer_dim = 512
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            encoder=PyramidalLSTMSeqTransducer(input_dim=layer_dim,
                                               hidden_dim=layer_dim,
                                               layers=1),
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            decoder=AutoRegressiveDecoder(
                input_dim=layer_dim,
                trg_embed_dim=layer_dim,
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim,
                                         yaml_path="model.decoder.rnn"),
                transform=NonLinear(input_dim=layer_dim * 2,
                                    output_dim=layer_dim),
                scorer=Softmax(input_dim=layer_dim, vocab_size=100),
                bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
        )

        batcher = batchers.TrgBatcher(batch_size=3)
        train_src, _ = \
          batcher.pack(self.src_data, self.trg_data)

        event_trigger.set_train(True)
        for sent_i in range(3):
            dy.renew_cg()
            src = train_src[sent_i]
            event_trigger.start_sent(src)
            embeddings = model.src_embedder.embed_sent(src)
            encodings = model.encoder.transduce(embeddings)
            if train_src[sent_i].mask is None:
                assert encodings.mask is None
            else:
                np.testing.assert_array_almost_equal(
                    train_src[sent_i].mask.np_arr, encodings.mask.np_arr)
Example #7
0
 def setUp(self):
   # Seeding
   np.random.seed(2)
   random.seed(2)
   layer_dim = 4
   xnmt.events.clear()
   ParamManager.init_param_col()
   self.src_vocab = Vocab(vocab_file="examples/data/head.ja.vocab")
   self.src_char_vocab = CharVocab(vocab_file="examples/data/head.ja.vocab")
   self.ngram_vocab = Vocab(vocab_file="examples/data/head.ngramcount.ja")
   self.trg_vocab = Vocab(vocab_file="examples/data/head.en.vocab")
   
   self.src_reader = CharFromWordTextReader(vocab= self.src_vocab, char_vocab= self.src_char_vocab)
   self.trg_reader = PlainTextReader(vocab=self.trg_vocab)
   
   
   self.layer_dim = layer_dim
   self.src_data = list(self.src_reader.read_sents("examples/data/head.ja"))
   self.trg_data = list(self.trg_reader.read_sents("examples/data/head.en"))
   self.src, self.trg = batchers.TrgBatcher(batch_size=3).pack(self.src_data, self.trg_data)
   dy.renew_cg(immediate_compute=True, check_validity=True)