Example #1
0
 def test_loss_model1(self):
     layer_dim = 512
     model = DefaultTranslator(
         src_reader=self.src_reader,
         trg_reader=self.trg_reader,
         src_embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=100),
         encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                     hidden_dim=layer_dim),
         attender=MlpAttender(input_dim=layer_dim,
                              state_dim=layer_dim,
                              hidden_dim=layer_dim),
         decoder=AutoRegressiveDecoder(
             input_dim=layer_dim,
             embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=100),
             rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                      hidden_dim=layer_dim,
                                      decoder_input_dim=layer_dim,
                                      yaml_path="model.decoder.rnn"),
             transform=NonLinear(input_dim=layer_dim * 2,
                                 output_dim=layer_dim),
             scorer=Softmax(input_dim=layer_dim, vocab_size=100),
             bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
     )
     event_trigger.set_train(False)
     self.assert_single_loss_equals_batch_loss(model)
Example #2
0
 def test_bi_lstm_encoder_len(self):
     layer_dim = 512
     model = DefaultTranslator(
         src_reader=self.src_reader,
         trg_reader=self.trg_reader,
         src_embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=100),
         encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                     hidden_dim=layer_dim,
                                     layers=3),
         attender=MlpAttender(input_dim=layer_dim,
                              state_dim=layer_dim,
                              hidden_dim=layer_dim),
         decoder=AutoRegressiveDecoder(
             input_dim=layer_dim,
             embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=100),
             rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                      hidden_dim=layer_dim,
                                      decoder_input_dim=layer_dim,
                                      yaml_path="model.decoder.rnn"),
             transform=NonLinear(input_dim=layer_dim * 2,
                                 output_dim=layer_dim),
             scorer=Softmax(input_dim=layer_dim, vocab_size=100),
             bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
     )
     self.assert_in_out_len_equal(model)
Example #3
0
    def setUp(self):
        layer_dim = 512
        events.clear()
        ParamManager.init_param_col()
        src_vocab = Vocab(vocab_file="examples/data/head.ja.vocab")
        trg_vocab = Vocab(vocab_file="examples/data/head.en.vocab")
        self.model = DefaultTranslator(
            src_reader=PlainTextReader(vocab=src_vocab),
            trg_reader=PlainTextReader(vocab=trg_vocab),
            src_embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=100),
            encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                        hidden_dim=layer_dim),
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            decoder=AutoRegressiveDecoder(
                input_dim=layer_dim,
                embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=100),
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim,
                                         yaml_path="model.decoder.rnn"),
                transform=NonLinear(input_dim=layer_dim * 2,
                                    output_dim=layer_dim),
                scorer=Softmax(input_dim=layer_dim, vocab_size=100),
                bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
        )
        event_trigger.set_train(False)

        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))
Example #4
0
 def test_py_lstm_encoder_len(self):
     layer_dim = 512
     model = DefaultTranslator(
         src_reader=self.src_reader,
         trg_reader=self.trg_reader,
         src_embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=100),
         encoder=PyramidalLSTMSeqTransducer(input_dim=layer_dim,
                                            hidden_dim=layer_dim,
                                            layers=3),
         attender=MlpAttender(input_dim=layer_dim,
                              state_dim=layer_dim,
                              hidden_dim=layer_dim),
         decoder=AutoRegressiveDecoder(
             input_dim=layer_dim,
             embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=100),
             rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                      hidden_dim=layer_dim,
                                      decoder_input_dim=layer_dim,
                                      yaml_path="model.decoder.rnn"),
             transform=NonLinear(input_dim=layer_dim * 2,
                                 output_dim=layer_dim),
             scorer=Softmax(input_dim=layer_dim, vocab_size=100),
             bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
     )
     event_trigger.set_train(True)
     for sent_i in range(10):
         dy.renew_cg()
         src = self.src_data[sent_i].create_padded_sent(
             4 - (self.src_data[sent_i].sent_len() % 4))
         event_trigger.start_sent(src)
         embeddings = model.src_embedder.embed_sent(src)
         encodings = model.encoder.transduce(embeddings)
         self.assertEqual(int(math.ceil(len(embeddings) / float(4))),
                          len(encodings))
Example #5
0
  def setUp(self):
    # Seeding
    numpy.random.seed(2)
    random.seed(2)
    layer_dim = 32
    xnmt.events.clear()
    ParamManager.init_param_col()
   
    src_vocab = Vocab(vocab_file="examples/data/head.ja.vocab")
    self.src_reader = CompoundReader(readers=[
      PlainTextReader(vocab=src_vocab),
      SimultActionTextReader()
    ], vocab=src_vocab)
    
    
    self.trg_reader = PlainTextReader(vocab=Vocab(vocab_file="examples/data/head.en.vocab"))
    self.layer_dim = layer_dim
    self.src_data = list(self.src_reader.read_sents(["examples/data/head.ja", "examples/data/simult/head.jaen.actions"]))
    self.trg_data = list(self.trg_reader.read_sents("examples/data/head.en"))
    self.input_vocab_size = len(self.src_reader.vocab.i2w)
    self.output_vocab_size = len(self.trg_reader.vocab.i2w)
    self.loss_calculator = loss_calculators.MLELoss()
    
    self.model = SimultaneousTranslator(
      src_reader=self.src_reader,
      trg_reader=self.trg_reader,
      src_embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=self.input_vocab_size),
      encoder=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim),
      attender=MlpAttender(input_dim=layer_dim, state_dim=layer_dim, hidden_dim=layer_dim),
      decoder=AutoRegressiveDecoder(input_dim=layer_dim,
                                    rnn=UniLSTMSeqTransducer(input_dim=layer_dim, hidden_dim=layer_dim,
                                                             decoder_input_dim=layer_dim, yaml_path="decoder"),
                                    transform=AuxNonLinear(input_dim=layer_dim, output_dim=layer_dim,
                                                           aux_input_dim=layer_dim),
                                    scorer=Softmax(vocab_size=self.output_vocab_size, input_dim=layer_dim),
                                    embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=self.output_vocab_size),
                                    bridge=NoBridge(dec_dim=layer_dim, dec_layers=1)),
      policy_network = network.PolicyNetwork(transforms.MLP(2*self.layer_dim, self.layer_dim, 2)),
      policy_train_oracle=True,
      policy_test_oracle=True
    )
    event_trigger.set_train(True)
    

    my_batcher = batchers.TrgBatcher(batch_size=3)
    self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data)
    dy.renew_cg(immediate_compute=True, check_validity=True)
Example #6
0
    def setUp(self):
        # Seeding
        numpy.random.seed(2)
        random.seed(2)
        layer_dim = 32
        xnmt.events.clear()
        ParamManager.init_param_col()

        edge_vocab = Vocab(vocab_file="examples/data/parse/head.en.edge_vocab")
        node_vocab = Vocab(vocab_file="examples/data/parse/head.en.node_vocab")
        value_vocab = Vocab(vocab_file="examples/data/head.en.vocab")

        self.src_reader = input_readers.PlainTextReader(vocab=value_vocab)
        self.trg_reader = input_readers.CoNLLToRNNGActionsReader(
            surface_vocab=value_vocab,
            nt_vocab=node_vocab,
            edg_vocab=edge_vocab)

        self.layer_dim = layer_dim
        self.src_data = list(
            self.src_reader.read_sents("examples/data/head.en"))
        self.trg_data = list(
            self.trg_reader.read_sents("examples/data/parse/head.en.conll"))
        self.loss_calculator = MLELoss()
        self.head_composer = composer.DyerHeadComposer(
            fwd_combinator=UniLSTMSeqTransducer(input_dim=layer_dim,
                                                hidden_dim=layer_dim),
            bwd_combinator=UniLSTMSeqTransducer(input_dim=layer_dim,
                                                hidden_dim=layer_dim),
            transform=AuxNonLinear(input_dim=layer_dim,
                                   aux_input_dim=layer_dim,
                                   output_dim=layer_dim))

        self.model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=LookupEmbedder(emb_dim=layer_dim,
                                        vocab_size=len(value_vocab)),
            encoder=IdentitySeqTransducer(),
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            decoder=RNNGDecoder(
                input_dim=layer_dim,
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim),
                transform=AuxNonLinear(input_dim=layer_dim,
                                       output_dim=layer_dim,
                                       aux_input_dim=layer_dim),
                bridge=NoBridge(dec_dim=layer_dim, dec_layers=1),
                graph_reader=self.trg_reader,
                head_composer=self.head_composer))
        event_trigger.set_train(True)

        my_batcher = batchers.TrgBatcher(batch_size=1)
        self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data)
        dy.renew_cg(immediate_compute=True, check_validity=True)
Example #7
0
    def test_py_lstm_mask(self):
        layer_dim = 512
        model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=100),
            encoder=PyramidalLSTMSeqTransducer(input_dim=layer_dim,
                                               hidden_dim=layer_dim,
                                               layers=1),
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            decoder=AutoRegressiveDecoder(
                input_dim=layer_dim,
                embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=100),
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim,
                                         yaml_path="model.decoder.rnn"),
                transform=NonLinear(input_dim=layer_dim * 2,
                                    output_dim=layer_dim),
                scorer=Softmax(input_dim=layer_dim, vocab_size=100),
                bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
        )

        batcher = batchers.TrgBatcher(batch_size=3)
        train_src, _ = \
          batcher.pack(self.src_data, self.trg_data)

        event_trigger.set_train(True)
        for sent_i in range(3):
            dy.renew_cg()
            src = train_src[sent_i]
            event_trigger.start_sent(src)
            embeddings = model.src_embedder.embed_sent(src)
            encodings = model.encoder.transduce(embeddings)
            if train_src[sent_i].mask is None:
                assert encodings.mask is None
            else:
                np.testing.assert_array_almost_equal(
                    train_src[sent_i].mask.np_arr, encodings.mask.np_arr)
Example #8
0
 def test_overfitting(self):
     layer_dim = 16
     batcher = SrcBatcher(batch_size=10, break_ties_randomly=False)
     train_args = {}
     train_args['src_file'] = "examples/data/head.ja"
     train_args['trg_file'] = "examples/data/head.en"
     train_args['loss_calculator'] = MLELoss()
     train_args['model'] = DefaultTranslator(
         src_reader=PlainTextReader(vocab=Vocab(
             vocab_file="examples/data/head.ja.vocab")),
         trg_reader=PlainTextReader(vocab=Vocab(
             vocab_file="examples/data/head.en.vocab")),
         src_embedder=LookupEmbedder(vocab_size=100, emb_dim=layer_dim),
         encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                     hidden_dim=layer_dim),
         attender=MlpAttender(input_dim=layer_dim,
                              state_dim=layer_dim,
                              hidden_dim=layer_dim),
         decoder=AutoRegressiveDecoder(
             input_dim=layer_dim,
             embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=100),
             rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                      hidden_dim=layer_dim,
                                      decoder_input_dim=layer_dim,
                                      yaml_path="model.decoder.rnn"),
             transform=NonLinear(input_dim=layer_dim * 2,
                                 output_dim=layer_dim),
             scorer=Softmax(input_dim=layer_dim, vocab_size=100),
             bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
     )
     train_args['dev_tasks'] = [
         LossEvalTask(model=train_args['model'],
                      src_file="examples/data/head.ja",
                      ref_file="examples/data/head.en",
                      batcher=batcher)
     ]
     train_args['run_for_epochs'] = 1
     train_args['trainer'] = AdamTrainer(alpha=0.1)
     train_args['batcher'] = batcher
     training_regimen = regimens.SimpleTrainingRegimen(**train_args)
Example #9
0
  def test_load(self):
    """
    Checks that the embeddings can be loaded, have the right dimension, and that one line matches.
    """
    embedder = LookupEmbedder(init_fastext='examples/data/wiki.ja.vec.small', emb_dim=300, vocab=self.input_reader.vocab)
    # self.assertEqual(embedder.embeddings.shape()[::-1], (self.input_reader.vocab_size(), 300))

    with open('examples/data/wiki.ja.vec.small', encoding='utf-8') as vecfile:
      test_line = next(islice(vecfile, 9, None)).split()  # Select the vector for '日'
    test_word = test_line[0]
    test_id = self.input_reader.vocab.w2i[test_word]
    test_emb = test_line[1:]

    self.assertTrue(np.allclose(embedder.embeddings.batch([test_id]).npvalue().tolist(),
                                np.array(test_emb, dtype=float).tolist(), rtol=1e-5))
Example #10
0
 def test_composite_composer(self):
   composer = DyerHeadComposer(fwd_combinator=UniLSTMSeqTransducer(input_dim=self.layer_dim, hidden_dim=self.layer_dim),
                               bwd_combinator=UniLSTMSeqTransducer(input_dim=self.layer_dim, hidden_dim=self.layer_dim),
                               transform=AuxNonLinear(input_dim=self.layer_dim,
                                                      output_dim=self.layer_dim,
                                                      aux_input_dim=self.layer_dim))
   embedder_1 = CharCompositionEmbedder(emb_dim=self.layer_dim,
                                      composer=composer,
                                      char_vocab=self.src_char_vocab)
   embedder_2 = LookupEmbedder(emb_dim=self.layer_dim, vocab_size=100)
   embedder = CompositeEmbedder(embedders=[embedder_1, embedder_2])
   event_trigger.set_train(True)
   event_trigger.start_sent(self.src[1])
   embedder.embed_sent(self.src[1])
   embedder.embed(self.src[1][0].words[0])
Example #11
0
 def test_lookup_composer(self):
   embedder = LookupEmbedder(emb_dim=self.layer_dim, vocab_size=100)
   embedder.embed_sent(self.src[1])
   embedder.embed(self.src[1][1][1])
Example #12
0
ParamManager.init_param_col()
ParamManager.param_col.model_file = model_file

src_vocab = Vocab(vocab_file="examples/data/head.ja.vocab")
trg_vocab = Vocab(vocab_file="examples/data/head.en.vocab")

batcher = SrcBatcher(batch_size=64)

inference = AutoRegressiveInference(batcher=InOrderBatcher(batch_size=1))

layer_dim = 512

model = DefaultTranslator(
    src_reader=PlainTextReader(vocab=src_vocab),
    trg_reader=PlainTextReader(vocab=trg_vocab),
    src_embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=len(src_vocab)),
    encoder=BiLSTMSeqTransducer(input_dim=layer_dim,
                                hidden_dim=layer_dim,
                                layers=1),
    attender=MlpAttender(hidden_dim=layer_dim,
                         state_dim=layer_dim,
                         input_dim=layer_dim),
    decoder=AutoRegressiveDecoder(
        input_dim=layer_dim,
        embedder=LookupEmbedder(emb_dim=layer_dim, vocab_size=len(trg_vocab)),
        rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                 hidden_dim=layer_dim,
                                 decoder_input_dim=layer_dim,
                                 yaml_path="decoder"),
        transform=AuxNonLinear(input_dim=layer_dim,
                               output_dim=layer_dim,