Example #1
0
class TestBLEU(unittest.TestCase):
  def setUp(self):
    xnmt.events.clear()
    self.hyp = ["the taro met the hanako".split()]
    self.ref = ["taro met hanako".split()]

    vocab = Vocab()
    self.hyp_id = list(map(vocab.convert, self.hyp[0]))
    self.ref_id = list(map(vocab.convert, self.ref[0]))

  def test_bleu_1gram(self):
    bleu = evaluator.BLEUEvaluator(ngram=1)
    exp_bleu = 3.0 / 5.0
    act_bleu = bleu.evaluate(self.ref, self.hyp).value()
    self.assertEqual(act_bleu, exp_bleu)

  @unittest.skipUnless(has_cython(), "requires cython to run")
  def test_bleu_4gram_fast(self):
    bleu = evaluator.FastBLEUEvaluator(ngram=4, smooth=1)
    exp_bleu = math.exp(math.log((3.0/5.0) * (2.0/5.0) * (1.0/4.0) * (1.0/3.0))/4.0)
    act_bleu = bleu.evaluate(self.ref_id, self.hyp_id)
    self.assertEqual(act_bleu, exp_bleu)
Example #2
0
class TestRunningConfig(unittest.TestCase):

  def setUp(self):
    xnmt.events.clear()

  def test_assemble(self):
    run.main(["test/config/assemble.yaml"])

  def test_classifier(self):
    run.main(["test/config/classifier.yaml"])

  def test_component_sharing(self):
    run.main(["test/config/component_sharing.yaml"])

  def test_encoders(self):
    run.main(["test/config/encoders.yaml"])

  def test_ensembling(self):
    run.main(["test/config/ensembling.yaml"])

  def test_forced(self):
    run.main(["test/config/forced.yaml"])

  def test_lm(self):
    run.main(["test/config/lm.yaml"])

  def test_load_model(self):
    run.main(["test/config/load_model.yaml"])

  def test_multi_task(self):
    run.main(["test/config/multi_task.yaml"])

  def test_multi_task_speech(self):
    run.main(["test/config/multi_task_speech.yaml"])

  def test_preproc(self):
    run.main(["test/config/preproc.yaml"])

  def test_pretrained_emb(self):
    run.main(["test/config/pretrained_embeddings.yaml"])

  def test_random_search_test_params(self):
    run.main(["test/config/random_search_test_params.yaml"])

  def test_random_search_train_params(self):
    run.main(["test/config/random_search_train_params.yaml"])

  def test_reload(self):
    run.main(["test/config/reload.yaml"])

  def test_segmenting(self):
    run.main(["test/config/seg_report.yaml"])

  def test_reload_exception(self):
    with self.assertRaises(ValueError) as context:
      run.main(["test/config/reload_exception.yaml"])
    self.assertEqual(str(context.exception), 'VanillaLSTMGates: x_t has inconsistent dimension')

  def test_report(self):
    run.main(["test/config/report.yaml"])

  @unittest.expectedFailure # TODO: these tests need to be fixed
  def test_retrieval(self):
    run.main(["test/config/retrieval.yaml"])

  def test_score(self):
    run.main(["test/config/score.yaml"])

  def test_self_attentional_am(self):
    run.main(["test/config/self_attentional_am.yaml"])

  def test_seq_labeler(self):
    run.main(["test/config/seq_labeler.yaml"])

  def test_speech(self):
    run.main(["test/config/speech.yaml"])

  @unittest.expectedFailure # TODO: these tests need to be fixed
  def test_speech_retrieval(self):
    run.main(["test/config/speech_retrieval.yaml"])

  def test_standard(self):
    run.main(["test/config/standard.yaml"])

  @unittest.expectedFailure # TODO: these tests need to be fixed
  def test_transformer(self):
    run.main(["test/config/transformer.yaml"])

  @unittest.skipUnless(has_cython(), "requires cython to run")
  def test_search_strategy_reinforce(self):
    run.main(["test/config/reinforce.yaml"])

  @unittest.skipUnless(has_cython(), "requires cython to run")
  def test_search_strategy_minrisk(self):
    run.main(["test/config/minrisk.yaml"])

  def tearDown(self):
    try:
      if os.path.isdir("test/tmp"):
        shutil.rmtree("test/tmp")
    except:
      pass
Example #3
0
class TestSegmentingEncoder(unittest.TestCase):
    def setUp(self):
        # Seeding
        numpy.random.seed(2)
        random.seed(2)
        layer_dim = 64
        xnmt.events.clear()
        ParamManager.init_param_col()
        self.segment_encoder_bilstm = BiLSTMSeqTransducer(input_dim=layer_dim,
                                                          hidden_dim=layer_dim)
        self.segment_composer = SumComposer()
        self.src_reader = CharFromWordTextReader()
        self.trg_reader = PlainTextReader()
        self.loss_calculator = AutoRegressiveMLELoss()

        baseline = Linear(input_dim=layer_dim, output_dim=1)
        policy_network = Linear(input_dim=layer_dim, output_dim=2)
        self.poisson_prior = PoissonPrior(mu=3.3)
        self.eps_greedy = EpsilonGreedy(eps_prob=0.0, prior=self.poisson_prior)
        self.conf_penalty = ConfidencePenalty()
        self.policy_gradient = PolicyGradient(input_dim=layer_dim,
                                              output_dim=2,
                                              baseline=baseline,
                                              policy_network=policy_network,
                                              z_normalization=True,
                                              conf_penalty=self.conf_penalty,
                                              sample=5)
        self.length_prior = PoissonLengthPrior(lmbd=3.3, weight=1)
        self.segmenting_encoder = SegmentingSeqTransducer(
            embed_encoder=self.segment_encoder_bilstm,
            segment_composer=self.segment_composer,
            final_transducer=BiLSTMSeqTransducer(input_dim=layer_dim,
                                                 hidden_dim=layer_dim),
            policy_learning=self.policy_gradient,
            eps_greedy=self.eps_greedy,
            length_prior=self.length_prior,
        )

        self.model = DefaultTranslator(
            src_reader=self.src_reader,
            trg_reader=self.trg_reader,
            src_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            encoder=self.segmenting_encoder,
            attender=MlpAttender(input_dim=layer_dim,
                                 state_dim=layer_dim,
                                 hidden_dim=layer_dim),
            trg_embedder=SimpleWordEmbedder(emb_dim=layer_dim, vocab_size=100),
            decoder=AutoRegressiveDecoder(
                input_dim=layer_dim,
                rnn=UniLSTMSeqTransducer(input_dim=layer_dim,
                                         hidden_dim=layer_dim,
                                         decoder_input_dim=layer_dim,
                                         yaml_path="decoder"),
                transform=AuxNonLinear(input_dim=layer_dim,
                                       output_dim=layer_dim,
                                       aux_input_dim=layer_dim),
                scorer=Softmax(vocab_size=100, input_dim=layer_dim),
                trg_embed_dim=layer_dim,
                bridge=CopyBridge(dec_dim=layer_dim, dec_layers=1)),
        )
        self.model.set_train(True)

        self.layer_dim = layer_dim
        self.src_data = list(
            self.model.src_reader.read_sents("examples/data/head.ja"))
        self.trg_data = list(
            self.model.trg_reader.read_sents("examples/data/head.en"))
        my_batcher = xnmt.batcher.TrgBatcher(batch_size=3,
                                             src_pad_token=1,
                                             trg_pad_token=2)
        self.src, self.trg = my_batcher.pack(self.src_data, self.trg_data)
        dy.renew_cg(immediate_compute=True, check_validity=True)

    def test_reinforce_loss(self):
        self.model.global_fertility = 1.0
        loss = self.model.calc_loss(self.src[0], self.trg[0],
                                    AutoRegressiveMLELoss())
        reinforce_loss = self.model.calc_additional_loss(
            self.trg[0], self.model, loss)
        pl = self.model.encoder.policy_learning
        # Ensure correct length
        src = self.src[0]
        mask = src.mask.np_arr
        outputs = self.segmenting_encoder.compose_output
        actions = self.segmenting_encoder.segment_actions
        # Ensure sample == outputs
        self.assertEqual(len(outputs), pl.sample)
        self.assertEqual(len(actions), pl.sample)
        for sample_action in actions:
            for i, sample_item in enumerate(sample_action):
                # The last segmentation is 1
                self.assertEqual(sample_item[-1], src[i].len_unpadded())
                # Assert that all flagged actions are </s>
                list(
                    self.assertEqual(pl.actions[j][0][i], 1)
                    for j in range(len(mask[i])) if mask[i][j] == 1)
        self.assertTrue("mle" in loss.expr_factors)
        self.assertTrue("fertility" in loss.expr_factors)
        self.assertTrue("rl_reinf" in reinforce_loss.expr_factors)
        self.assertTrue("rl_baseline" in reinforce_loss.expr_factors)
        self.assertTrue("rl_confpen" in reinforce_loss.expr_factors)
        # Ensure we are sampling from the policy learning
        self.assertEqual(self.model.encoder.segmenting_action,
                         SegmentingSeqTransducer.SegmentingAction.POLICY)

    def calc_loss_single_batch(self):
        loss = self.model.calc_loss(self.src[0], self.trg[0],
                                    AutoRegressiveMLELoss())
        reinforce_loss = self.model.calc_additional_loss(
            self.trg[0], self.model, loss)
        return loss, reinforce_loss

    def test_gold_input(self):
        self.model.encoder.policy_learning = None
        self.model.encoder.eps_greedy = None
        self.calc_loss_single_batch()
        self.assertEqual(self.model.encoder.segmenting_action,
                         SegmentingSeqTransducer.SegmentingAction.GOLD)

    @unittest.skipUnless(has_cython(), "requires cython to run")
    def test_sample_input(self):
        self.model.encoder.eps_greedy.eps_prob = 1.0
        self.calc_loss_single_batch()
        self.assertEqual(
            self.model.encoder.segmenting_action,
            SegmentingSeqTransducer.SegmentingAction.POLICY_SAMPLE)
        self.assertEqual(self.model.encoder.policy_learning.sampling_action,
                         PolicyGradient.SamplingAction.PREDEFINED)

    def test_global_fertility(self):
        # Test Global fertility weight
        self.model.global_fertility = 1.0
        self.segmenting_encoder.policy_learning = None
        loss1, _ = self.calc_loss_single_batch()
        self.assertTrue("fertility" in loss1.expr_factors)

    def test_policy_train_test(self):
        self.model.set_train(True)
        self.calc_loss_single_batch()
        self.assertEqual(self.model.encoder.policy_learning.sampling_action,
                         PolicyGradient.SamplingAction.POLICY_CLP)
        self.model.set_train(False)
        self.calc_loss_single_batch()
        self.assertEqual(self.model.encoder.policy_learning.sampling_action,
                         PolicyGradient.SamplingAction.POLICY_AMAX)

    def test_no_policy_train_test(self):
        self.model.encoder.policy_learning = None
        self.model.set_train(True)
        self.calc_loss_single_batch()
        self.assertEqual(self.model.encoder.segmenting_action,
                         SegmentingSeqTransducer.SegmentingAction.PURE_SAMPLE)
        self.model.set_train(False)
        self.calc_loss_single_batch()
        self.assertEqual(self.model.encoder.segmenting_action,
                         SegmentingSeqTransducer.SegmentingAction.PURE_SAMPLE)

    def test_sample_during_search(self):
        self.model.set_train(False)
        self.model.encoder.sample_during_search = True
        self.calc_loss_single_batch()
        self.assertEqual(self.model.encoder.segmenting_action,
                         SegmentingSeqTransducer.SegmentingAction.POLICY)

    @unittest.skipUnless(has_cython(), "requires cython to run")
    def test_policy_gold(self):
        self.model.encoder.eps_greedy.prior = GoldInputPrior("segment")
        self.model.encoder.eps_greedy.eps_prob = 1.0
        self.calc_loss_single_batch()