import xnode_old myInt = 69 myInt2 = 96 xnode_old.show(myInt, myInt2)
import xnode_old from typing import List def digits_to_number(digits: List[int]) -> int: return int("".join(str(d) for d in digits)) def largest_num(list: List[int]) -> int: return 0 if __name__ == "__main__": # Run tests xnode_old.show(digits_to_number([1, 2, 3, 0])) xnode_old.show(digits_to_number([0, 1, 2, 3]))
import xnode_old myInt = 69 xnode_old.show(myInt)
def __call__(self, in1): return in1 + self.state def parent_fn(in1): x = child_fn(in1) x = child_fn(x) x = child_fn(x) return x def grandparent_fn(in1, in2): out1 = parent_fn(in1) out2 = parent_fn(in2) return out1 + out2 # TODO: make these annotations child_fn = track_callable_instance(ChildFn()) # # TODO: item alignment? parent_fn = track_callable_instance(parent_fn) grandparent_fn = track_callable_instance(grandparent_fn) # TODO: handle args to containers -- ignore? x = grandparent_fn(0, 1) graph = x.xn().compile_full()[0] # print(graph) xnode_old.show(x)
import xnode_old import random import string length = 5 strings = 30 strings = [ ''.join(random.choice(string.ascii_lowercase) for _ in range(length)) for _ in range(strings) ] xnode_old.show(strings) tree = dict() for s in strings: t = tree for c in s: if c not in t: t[c] = dict() t = t[c] xnode_old.show(tree)
import xnode_old urls = [ 'https://www.google.com/hello/world', 'https://www.google.com/goodbye/world', 'https://www.google.com/goodbye/moon' ] xnode_old.show(urls) params = [url.split('/')[3:] for url in urls] xnode_old.show(params) pairs = set() for i, param_list in enumerate(params): xnode_old.show(param_list) for t, other_param_list in enumerate(params[i + 1:]): xnode_old.show(other_param_list) differences = 0 for param1, param2 in zip(param_list, other_param_list): if param1 != param2: differences += 1 if differences > 1: break xnode_old.show(differences) if differences == 1: pairs.add((urls[i], urls[t])) xnode_old.show(pairs)
import torch import xnode_old from xntorch.autograd import Variable import sys import os sys.path.append(os.path.join(sys.path[0], '..', 'test')) from stack_lstm import StackLSTM, PseudoLogLSTM from vgg import vgg16 myInt = 86 myInt2 = 87 myFloat = 3.1415926535897 xnode_old.show(myFloat) myBool = True myString = "The quick brown fox jumps over the lazy dog" xnode_old.show(myString) myNone = None myList = [1, 2.3, False, "hello", None, [10, 11, ["This", "is", "the", "end"]]] xnode_old.show(myList) myList[0] = 100 myDict = {"key1": "value1", "key2": "value2", 10: myList} myTensor1 = torch.rand(2, 3, 4, 5) myTensor2 = myTensor1[0, 0] myTensor3 = myTensor1[0, 0, 0] myFloat2 = myTensor1[0, 0, 0, 0] xnode_old.show(myTensor1) myClass = Variable myVGGInput = Variable(torch.ones(1, 3, 32, 32)) myVGG = vgg16()
import xnode_old xnode_old.show(86)
import xnode_old xnode_old.show()