Example #1
0
def test_idft_dft():
    """
    Testing idft(dft(s)) == s
    """
    N = 40
    dx = np.random.rand()
    s = xr.DataArray(
        np.random.rand(N) + 1j * np.random.rand(N),
        dims="x",
        coords={
            "x":
            dx * (np.arange(-N // 2, -N // 2 + N) +
                  np.random.randint(-N // 2, N // 2))
        },
    )
    FTs = xrft.dft(s, true_phase=True, true_amplitude=True)
    mean_lag = float(s["x"][{
        "x": s.sizes["x"] // 2
    }])  # lag ensure IFTs to be on the same coordinate range than s

    # lag is set manually
    IFTs = xrft.idft(FTs,
                     shift=True,
                     true_phase=True,
                     true_amplitude=True,
                     lag=mean_lag)
    xrt.assert_allclose(s, IFTs)

    # lag is set automatically
    IFTs = xrft.idft(FTs, shift=True, true_phase=True, true_amplitude=True)
    xrt.assert_allclose(s, IFTs)
Example #2
0
def test_idft_centered_coordinates():
    """error should be raised if coordinates are not centered on zero in idft"""
    N = 20
    s = xr.DataArray(
        np.random.rand(N) + 1j * np.random.rand(N),
        dims="freq_x",
        coords={"freq_x": np.arange(-N // 2, N // 2) + 2},
    )
    with pytest.raises(ValueError):
        xrft.idft(s)
Example #3
0
def test_constant_coordinates():
    """error should be raised if coordinates are constant"""
    N = 20
    s = xr.DataArray(
        np.random.rand(N) + 1j * np.random.rand(N),
        dims="freq_x",
        coords={"freq_x": np.zeros(N)},
    )
    with pytest.raises(ValueError):
        xrft.dft(s)

        with pytest.raises(ValueError):
            xrft.idft(s)
Example #4
0
def fft_filter(data: xr.DataArray, stops):
    """
    Applies a brick wall filter at region in ``stops`` in the Fourier transform of data. Use with care.
    :param data:
    :param stops:
    :return:
    """

    # This won't tolerate inverse inverse filtering ;)
    kdata = xrft.dft(data)

    # this will produce a fair amount of ringing, Scipy isn't very clear about how to butterworth filter in Nd
    for stop in stops:
        kstop = {'freq_' + k if 'freq_' not in k else k: v for k, v in stop.items()} # be nice
        kdata.loc[kstop] = 0

    kkdata = xrft.idft(kdata)
    kkdata.values = np.real(kkdata.values)
    kkdata.values = kkdata.values - np.min(kkdata.values) + np.mean(data.values)

    filtered_arr = xr.DataArray(
        kkdata,
        data.coords,
        data.dims,
        attrs=data.attrs.copy()
    )

    if 'id' in filtered_arr:
        del filtered_arr.attrs['id']

        provenance(filtered_arr, data, {
            'what': 'Apply a filter in frequency space by brick walling coordinate regions.',
            'by': 'fft_filter',
            'stops': stops,
        })

    return filtered_arr