Example #1
0
def _get_files_as_regularsurfaces_multiprocess(option=1):
    surfs = []

    with concurrent.futures.ProcessPoolExecutor(
            max_workers=NTHREAD) as executor:

        if option == 1:
            futures = {
                executor.submit(_get_regsurff, i): i
                for i in range(NTHREAD)
            }
        else:
            futures = {
                executor.submit(_get_regsurfi, i): i
                for i in range(NTHREAD)
            }

        for future in concurrent.futures.as_completed(futures):
            try:
                surf = future.result()
            except Exception as exc:  # pylint: disable=broad-except
                logger.error("Error: %s", exc)
            else:
                surfs.append(surf)

        regular_surfaces = xtgeo.Surfaces(surfs)
        return regular_surfaces
Example #2
0
def test_create_init_filelist():
    """Create simple Surfaces instance, initiate with a list of files."""
    flist = [TESTSET1A, TESTSET1B]
    surfs = xtgeo.Surfaces(flist)

    assert isinstance(surfs.surfaces[0], xtgeo.RegularSurface)
    assert isinstance(surfs, xtgeo.Surfaces)
Example #3
0
def test_more_statistics():
    """Find the mean etc measures of the surfaces"""

    base = xtgeo.RegularSurface(TESTSET1A)
    base.values *= 0.0
    bmean = base.values.mean()
    surfs = []
    surfs.append(base)

    # this will get 101 constant maps ranging from 0 til 100
    for inum in range(1, 101):
        tmp = base.copy()
        tmp.values += float(inum)
        surfs.append(tmp)

    so = xtgeo.Surfaces(surfs)
    res = so.statistics()

    # theoretical stdev:
    sum2 = 0.0
    for inum in range(0, 101):
        sum2 += (float(inum) - 50.0)**2
    stdev = math.sqrt(sum2 / 100.0)  # total 101 samples, use N-1

    tsetup.assert_almostequal(res["mean"].values.mean(), bmean + 50.0, 0.0001)
    tsetup.assert_almostequal(res["std"].values.mean(), stdev, 0.0001)
Example #4
0
def test_create_init_objectlist():
    """Create simple Surfaces instance, initiate with a list of objects."""
    top = xtgeo.RegularSurface(TESTSET1A)
    base = xtgeo.RegularSurface(TESTSET1B)
    surfs = xtgeo.Surfaces([top, base])

    assert isinstance(surfs.surfaces[0], xtgeo.RegularSurface)
    assert isinstance(surfs, xtgeo.Surfaces)
Example #5
0
def test_create_init_mixlist():
    """Create simple Surfaces instance, initiate with a list of files"""

    top = xtgeo.RegularSurface(TESTSET1A)
    flist = [top, TESTSET1B]
    surfs = xtgeo.Surfaces(flist)

    assert isinstance(surfs.surfaces[0], xtgeo.RegularSurface)
    assert isinstance(surfs, xtgeo.Surfaces)
Example #6
0
    def _create_statistical_surface(
        self, address: StatisticalSurfaceAddress
    ) -> Optional[xtgeo.RegularSurface]:
        surf_fns: List[str] = self._locate_simulated_surfaces(
            attribute=address.attribute,
            name=address.name,
            datestr=address.datestr if address.datestr is not None else "",
            realizations=address.realizations,
        )

        if len(surf_fns) == 0:
            LOGGER.warning(f"No input surfaces found for statistical surface {address}")
            return None

        timer = PerfTimer()

        surfaces = xtgeo.Surfaces(surf_fns)
        et_load_s = timer.lap_s()

        surf_count = len(surfaces.surfaces)
        if surf_count == 0:
            LOGGER.warning(
                f"Could not load input surfaces for statistical surface {address}"
            )
            return None

        # print("########################################################")
        # first_surf = surfaces.surfaces[0]
        # for surf in surfaces.surfaces:
        #     print(
        #         surf.dimensions,
        #         surf.xinc,
        #         surf.yinc,
        #         surf.xori,
        #         surf.yori,
        #         surf.rotation,
        #         surf.filesrc,
        #     )
        # print("########################################################")

        # Suppress numpy warnings when surfaces have undefined z-values
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", "All-NaN slice encountered")
            warnings.filterwarnings("ignore", "Mean of empty slice")
            warnings.filterwarnings("ignore", "Degrees of freedom <= 0 for slice")

            stat_surface = _calc_statistic_across_surfaces(address.statistic, surfaces)
        et_calc_s = timer.lap_s()

        LOGGER.debug(
            f"Created statistical surface in: {timer.elapsed_s():.2f}s ("
            f"load={et_load_s:.2f}s, calc={et_calc_s:.2f}s), "
            f"[#surfaces={surf_count}, stat={address.statistic}, "
            f"attr={address.attribute}, name={address.name}, date={address.datestr}]"
        )

        return stat_surface
Example #7
0
def test_statistics():
    """Find the mean etc measures of the surfaces."""
    flist = [TESTSET1A, TESTSET1B]
    surfs = xtgeo.Surfaces(flist)
    res = surfs.statistics()
    res["mean"].to_file(join(TMPD, "surf_mean.gri"))
    res["std"].to_file(join(TMPD, "surf_std.gri"))

    assert_almostequal(res["mean"].values.mean(), 1720.5029, 0.0001)
    assert_almostequal(res["std"].values.min(), 3.7039, 0.0001)
Example #8
0
def test_create():
    """Create simple Surfaces instance."""
    logger.info("Simple case...")

    top = xtgeo.RegularSurface(TESTSET1A)
    base = xtgeo.RegularSurface(TESTSET1B)
    surfs = xtgeo.Surfaces()
    surfs.surfaces = [top, base]
    surfs.describe()

    assert isinstance(surfs.surfaces[0], xtgeo.RegularSurface)
    assert isinstance(surfs, xtgeo.Surfaces)
Example #9
0
def test_get_surfaces_from_3dgrid():
    """Create surfaces from a 3D grid."""
    mygrid = xtgeo.Grid(TESTSETG1)
    surfs = xtgeo.Surfaces()
    surfs.from_grid3d(mygrid, rfactor=2)
    surfs.describe()

    assert_almostequal(surfs.surfaces[-1].values.mean(), 1742.28, 0.04)
    assert_almostequal(surfs.surfaces[-1].values.min(), 1589.58, 0.04)
    assert_almostequal(surfs.surfaces[-1].values.max(), 1977.29, 0.04)
    assert_almostequal(surfs.surfaces[0].values.mean(), 1697.02, 0.04)

    for srf in surfs.surfaces:
        srf.to_file(join(TMPD, srf.name + ".gri"))
Example #10
0
def save_surface(fns, statistic) -> io.BytesIO:
    surfaces = xtgeo.Surfaces(fns)
    if len(surfaces.surfaces) == 0:
        surface = xtgeo.RegularSurface()
    elif statistic in ["Mean", "StdDev", "Min", "Max", "P10", "P90"]:
        # Suppress numpy warnings when surfaces have undefined z-values
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", "All-NaN slice encountered")
            warnings.filterwarnings("ignore", "Mean of empty slice")
            warnings.filterwarnings("ignore", "Degrees of freedom <= 0 for slice")
            surface = calculate_statistic(surfaces, statistic)
    else:
        surface = xtgeo.RegularSurface()
    return io.BytesIO(surface_to_json(surface).encode())
Example #11
0
def test_more_statistics():
    """Find the mean etc measures of the surfaces."""
    base = xtgeo.RegularSurface(TESTSET1A)
    base.values *= 0.0
    bmean = base.values.mean()
    surfs = []
    surfs.append(base)

    # this will get 101 constant maps ranging from 0 til 100
    for inum in range(1, 101):
        tmp = base.copy()
        tmp.values += float(inum)
        surfs.append(tmp)

    so = xtgeo.Surfaces(surfs)
    res = so.statistics()

    # theoretical stdev:
    sum2 = 0.0
    for inum in range(0, 101):
        sum2 += (float(inum) - 50.0) ** 2
    stdev = math.sqrt(sum2 / 100.0)  # total 101 samples, use N-1

    assert_almostequal(res["mean"].values.mean(), bmean + 50.0, 0.0001)
    assert_almostequal(res["std"].values.mean(), stdev, 0.0001)

    small = xtgeo.RegularSurface()
    so2 = xtgeo.Surfaces()

    for inum in range(10):
        tmp = small.copy()
        tmp.values += 8.76543
        so2.append([tmp])

    res2 = so2.statistics(percentiles=[10, 50])
    assert res2["p10"].values.mean() == pytest.approx(16.408287142, 0.001)
def test_regsurf_aggregated_diffdata(fmurun_w_casemetadata, rmsglobalconfig, regsurf):
    """Test surfaces, where input is diffdata."""
    logger.info("Active folder is %s", fmurun_w_casemetadata)

    os.chdir(fmurun_w_casemetadata)

    edata = dataio.ExportData(
        config=rmsglobalconfig,  # read from global config
    )

    aggs = []
    # create "forward" files
    for i in range(10):
        use_regsurf = regsurf.copy()
        use_regsurf.values += float(i)
        expfile = edata.export(
            use_regsurf,
            name="mymap_" + str(i),
            realization=i,
            timedata=[[20300201], [19990204]],
        )
        aggs.append(expfile)

    # next task is to do an aggradation, and now the metadata already exists
    # per input element which shall be re-used
    surfs = xtgeo.Surfaces()
    metas = []
    for mapfile in aggs:
        surf = xtgeo.surface_from_file(mapfile)
        meta = dataio.read_metadata(mapfile)

        metas.append(meta)
        surfs.append([surf])

    aggregated = surfs.statistics()
    logger.info("Aggr. mean is %s", aggregated["mean"].values.mean())  # shall be 1238.5

    aggdata = dataio.AggregatedData(
        configs=metas,
        operation="mean",
        name="myaggrd",
        verbosity="INFO",
        aggregation_id="789politipoliti",
    )
    newmeta = aggdata.generate_aggregation_metadata(aggregated["mean"])
    logger.info("New metadata:\n%s", utils.prettyprint_dict(newmeta))
Example #13
0
def test_surfaces_apply():
    base = xtgeo.RegularSurface(TESTSET1A)
    base.describe()
    base.values *= 0.0
    bmean = base.values.mean()
    surfs = [base]
    for inum in range(1, 101):
        tmp = base.copy()
        tmp.values += float(inum)
        surfs.append(tmp)

    so = xtgeo.Surfaces(surfs)
    res = so.apply(np.nanmean)

    tsetup.assert_almostequal(res.values.mean(), bmean + 50.0, 0.0001)

    res = so.apply(np.nanpercentile, 10, axis=0, interpolation="nearest")
    tsetup.assert_almostequal(res.values.mean(), bmean + 10.0, 0.0001)
def save_statistical_surface(fns: List[str], calculation: str) -> io.BytesIO:
    """Wrapper function to store a calculated surface as BytesIO"""
    surfaces = xtgeo.Surfaces(fns)
    if len(surfaces.surfaces) == 0:
        surface = xtgeo.RegularSurface(ncol=1, nrow=1, xinc=1,
                                       yinc=1)  # 1's as input is required
    elif calculation in ["Mean", "StdDev", "Min", "Max", "P10", "P90"]:
        # Suppress numpy warnings when surfaces have undefined z-values
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", "All-NaN slice encountered")
            warnings.filterwarnings("ignore", "Mean of empty slice")
            warnings.filterwarnings("ignore",
                                    "Degrees of freedom <= 0 for slice")
            surface = get_statistical_surface(surfaces, calculation)
    else:
        surface = xtgeo.RegularSurface(ncol=1, nrow=1, xinc=1,
                                       yinc=1)  # 1's as input is required
    return io.BytesIO(surface_to_json(surface).encode())
Example #15
0
def save_surface(fns, statistic) -> io.BytesIO:
    surfaces = xtgeo.Surfaces(fns)
    if len(surfaces.surfaces) == 0:
        surface = xtgeo.RegularSurface()
    elif statistic == "Mean":
        surface = surfaces.apply(np.nanmean, axis=0)
    elif statistic == "StdDev":
        surface = surfaces.apply(np.nanstd, axis=0)
    elif statistic == "Min":
        surface = surfaces.apply(np.nanmin, axis=0)
    elif statistic == "Max":
        surface = surfaces.apply(np.nanmax, axis=0)
    elif statistic == "P10":
        surface = surfaces.apply(np.nanpercentile, 10, axis=0)
    elif statistic == "P90":
        surface = surfaces.apply(np.nanpercentile, 90, axis=0)
    else:
        surface = xtgeo.RegularSurface()
    return io.BytesIO(surface_to_json(surface).encode())
Example #16
0
def save_statistical_surface_no_store(fns: List[str],
                                      calculation: Optional[str] = "Mean"
                                      ) -> io.BytesIO:
    """Wrapper function to store a calculated surface as BytesIO"""

    surfaces = xtgeo.Surfaces([get_stored_surface_path(fn) for fn in fns])
    if len(surfaces.surfaces) == 0:
        surface = xtgeo.RegularSurface(ncol=1, nrow=1, xinc=1,
                                       yinc=1)  # 1's as input is required
    elif calculation in ["Mean", "StdDev", "Min", "Max", "P10", "P90"]:
        # Suppress numpy warnings when surfaces have undefined z-values
        with warnings.catch_warnings():
            warnings.filterwarnings("ignore", "All-NaN slice encountered")
            warnings.filterwarnings("ignore", "Mean of empty slice")
            warnings.filterwarnings("ignore",
                                    "Degrees of freedom <= 0 for slice")
            surface = get_statistical_surface(surfaces, calculation)
    else:
        surface = xtgeo.RegularSurface(ncol=1, nrow=1, xinc=1,
                                       yinc=1)  # 1's as input is required
    stream = io.BytesIO()
    surface.to_file(stream, fformat="irap_binary")
    return stream
Example #17
0
def get_surfaces(fns: List[str]) -> xtgeo.Surfaces:
    return xtgeo.Surfaces(fns)
def test_regsurf_aggregated(fmurun_w_casemetadata, rmsglobalconfig, regsurf):
    """Test generating aggragated metadata for a surface, where input has metadata."""
    logger.info("Active folder is %s", fmurun_w_casemetadata)

    os.chdir(fmurun_w_casemetadata)

    edata = dataio.ExportData(
        config=rmsglobalconfig,  # read from global config
        verbosity="INFO",
    )

    aggs = []
    # create "forward" files
    for i in range(1):  # TODO! 10
        use_regsurf = regsurf.copy()
        use_regsurf.values += float(i)
        expfile = edata.export(use_regsurf, name="mymap_" + str(i), realization=i)
        aggs.append(expfile)

    # next task is to do an aggradation, and now the metadata already exists
    # per input element which shall be re-used
    surfs = xtgeo.Surfaces()
    metas = []
    for mapfile in aggs:
        surf = xtgeo.surface_from_file(mapfile)
        meta = dataio.read_metadata(mapfile)
        print(utils.prettyprint_dict(meta))

        metas.append(meta)
        surfs.append([surf])

    aggregated = surfs.statistics()
    logger.info("Aggr. mean is %s", aggregated["mean"].values.mean())  # shall be 1238.5

    aggdata = dataio.AggregatedData(
        configs=metas,
        operation="mean",
        name="myaggrd",
        verbosity="INFO",
        aggregation_id="1234",
    )
    newmeta = aggdata.generate_aggregation_metadata(aggregated["mean"])
    logger.debug("New metadata:\n%s", utils.prettyprint_dict(newmeta))
    assert newmeta["fmu"]["aggregation"]["id"] == "1234"

    # let aggregation input True generate hash
    aggdata = dataio.AggregatedData(
        configs=metas,
        operation="mean",
        name="myaggrd2",
        verbosity="INFO",
        aggregation_id=True,
    )
    newmeta = aggdata.generate_aggregation_metadata(aggregated["mean"])
    logger.debug("New metadata:\n%s", utils.prettyprint_dict(newmeta))
    assert newmeta["fmu"]["aggregation"]["id"] != "1234"
    assert newmeta["fmu"]["aggregation"]["id"] is not True

    # let aggregation input None generate a missing key
    aggdata = dataio.AggregatedData(
        configs=metas,
        operation="mean",
        name="myaggrd2",
        verbosity="INFO",
        aggregation_id=None,
    )
    newmeta = aggdata.generate_aggregation_metadata(aggregated["mean"])
    logger.debug("New metadata:\n%s", utils.prettyprint_dict(newmeta))
    assert "id" not in newmeta["fmu"]["aggregation"]