def __init__(self, dof, state=None, hooks=None, counter0=0): """ **Arguments:** dof A specification of the degrees of freedom. The convergence criteria are also part of this argument. This must be a DOF instance. **Optional arguments:** state A list with state items. State items are simple objects that take or derive a property from the current state of the iterative algorithm. hooks A function (or a list of functions) that is called after every iterative. counter0 The counter value associated with the initial state. """ self.dof = dof Iterative.__init__(self, dof.ff, state, hooks, counter0)
def propagate(self): # Allow specialized hooks to modify the state before the regular verlet # step. self.call_verlet_hooks('pre') # Regular verlet step self.acc = -self.gpos / self.masses.reshape(-1, 1) self.vel += 0.5 * self.acc * self.timestep self.pos += self.timestep * self.vel self.ff.update_pos(self.pos) self.gpos[:] = 0.0 self.vtens[:] = 0.0 self.epot = self.ff.compute(self.gpos, self.vtens) self.acc = -self.gpos / self.masses.reshape(-1, 1) self.vel += 0.5 * self.acc * self.timestep self.ekin = self._compute_ekin() # Allow specialized verlet hooks to modify the state after the step self.call_verlet_hooks('post') # Calculate the total position change self.posnieuw = self.pos.copy() self.delta[:] = self.posnieuw - self.posoud self.posoud[:] = self.posnieuw # Common post-processing of a single step self.time += self.timestep self.compute_properties() Iterative.propagate(self) # Includes call to conventional hooks
def __init__(self, ff, fn_traj, state=None, hooks=None, counter0=0): """ **Arguments:** ff A ForceField instance fn_traj A hdf5 file name containing the trajectory **Optional arguments:** state A list with state items. State items are simple objects that take or derive a property from the current state of the iterative algorithm. hooks A function (or a list of functions) that is called after every iterative. counter0 The counter value associated with the initial state. """ self.traj = h5py.File(fn_traj, 'r') self.nframes = len(self.traj['trajectory/pos'][:]) Iterative.__init__(self, ff, state, hooks, counter0)
def __init__(self, ff, fn_traj, state=None, hooks=None, counter0=0): """ **Arguments:** ff A ForceField instance fn_traj A hdf5 file name containing the trajectory **Optional arguments:** state A list with state items. State items are simple objects that take or derive a property from the current state of the iterative algorithm. hooks A function (or a list of functions) that is called after every iterative. counter0 The counter value associated with the initial state. """ self.traj = h5.File(fn_traj, 'r') self.nframes = len(self.traj['trajectory/pos'][:]) Iterative.__init__(self, ff, state, hooks, counter0)
def propagate(self): # Allow specialized hooks to modify the state before the regular verlet # step. self.call_verlet_hooks('pre') # Regular verlet step self.acc = -self.gpos/self.masses.reshape(-1,1) self.vel += 0.5*self.acc*self.timestep self.pos += self.timestep*self.vel self.ff.update_pos(self.pos) self.gpos[:] = 0.0 self.vtens[:] = 0.0 self.epot = self.ff.compute(self.gpos, self.vtens) self.acc = -self.gpos/self.masses.reshape(-1,1) self.vel += 0.5*self.acc*self.timestep self.ekin = self._compute_ekin() # Allow specialized verlet hooks to modify the state after the step self.call_verlet_hooks('post') # Calculate the total position change self.posnieuw = self.pos.copy() self.delta[:] = self.posnieuw-self.posoud self.posoud[:] = self.posnieuw # Common post-processing of a single step self.time += self.timestep self.compute_properties() Iterative.propagate(self) # Includes call to conventional hooks
def initialize(self): # Standard initialization of Verlet algorithm self.gpos[:] = 0.0 self.ff.update_pos(self.pos) self.epot = self.ff.compute(self.gpos) self.acc = -self.gpos/self.masses.reshape(-1,1) # Allow for specialized initializations by the Verlet hooks. self.call_verlet_hooks('init') # Configure the number of degrees of freedom if needed if self.ndof is None: self.ndof = self.pos.size # Common post-processing of the initialization self.compute_properties() Iterative.initialize(self) # Includes calls to conventional hooks
def initialize(self): # Standard initialization of Verlet algorithm self.gpos[:] = 0.0 self.ff.update_pos(self.pos) self.epot = self.ff.compute(self.gpos) self.acc = -self.gpos / self.masses.reshape(-1, 1) self.posoud = self.pos.copy() # Allow for specialized initializations by the Verlet hooks. self.call_verlet_hooks('init') # Configure the number of degrees of freedom if needed if self.ndof is None: self.ndof = self.pos.size # Common post-processing of the initialization self.compute_properties(self.restart_h5) Iterative.initialize(self) # Includes calls to conventional hooks
def propagate(self): # Allow specialized hooks to modify the state before the regular verlet # step. self.call_verlet_hooks('pre') # Regular verlet step self.delta[:] = self.timestep*self.vel + (0.5*self.timestep**2)*self.acc self.pos += self.delta self.ff.update_pos(self.pos) self.gpos[:] = 0.0 self.vtens[:] = 0.0 self.epot = self.ff.compute(self.gpos, self.vtens) acc = -self.gpos/self.masses.reshape(-1,1) self.vel += 0.5*(acc+self.acc)*self.timestep self.acc = acc # Allow specialized verlet hooks to modify the state after the step self.call_verlet_hooks('post') # Common post-processing of a single step self.time += self.timestep self.compute_properties() Iterative.propagate(self) # Includes call to conventional hooks
def propagate(self): self.dof.check_convergence() Iterative.propagate(self) return self.dof.converged
def initialize(self): # The first call to check_convergence will never flag convergence, but # it is need to keep track of some convergence criteria. self.dof.check_convergence() Iterative.initialize(self)
def __init__(self, ff, timestep=None, state=None, hooks=None, vel0=None, temp0=300, scalevel0=True, time0=None, ndof=None, counter0=None, restart_h5=None): """ **Arguments:** ff A ForceField instance **Optional arguments:** timestep The integration time step (in atomic units) state A list with state items. State items are simple objects that take or derive a property from the current state of the iterative algorithm. hooks A function (or a list of functions) that is called after every iterative. vel0 An array with initial velocities. If not given, random velocities are sampled from the Maxwell-Boltzmann distribution corresponding to the optional arguments temp0 and scalevel0 temp0 The (initial) temperature for the random initial velocities scalevel0 If True (the default), the random velocities are rescaled such that the instantaneous temperature coincides with temp0. time0 The time associated with the initial state. ndof When given, this option overrides the number of degrees of freedom determined from internal heuristics. When ndof is not given, its default value depends on the thermostat used. In most cases it is 3*natom, except for the NHC thermostat where the number if internal degrees of freedom is counted. The ndof attribute is used to derive the temperature from the kinetic energy. counter0 The counter value associated with the initial state. restart_h5 HDF5 object containing the restart information """ # Assign init arguments if timestep is None and restart_h5 is None: raise AssertionError('No Verlet timestep is found') self.ndof = ndof self.hooks = hooks self.restart_h5 = restart_h5 # Retrieve the necessary properties if restarting. Restart objects # are overwritten by optional arguments in VerletIntegrator if self.restart_h5 is None: # set None variables to default value if time0 is None: time0 = 0.0 if counter0 is None: counter0 = 0 self.pos = ff.system.pos.copy() self.rvecs = ff.system.cell.rvecs.copy() self.timestep = timestep self.time = time0 else: # Arguments associated with the unit cell and positions are always retrieved tgrp = self.restart_h5['trajectory'] self.pos = tgrp['pos'][-1, :, :] ff.update_pos(self.pos) if 'cell' in tgrp: self.rvecs = tgrp['cell'][-1, :, :] ff.update_rvecs(self.rvecs) else: self.rvecs = None # Arguments which can be provided in the VerletIntegrator object are only # taken from the restart file if not provided explicitly if time0 is None: self.time = tgrp['time'][-1] else: self.time = time0 if counter0 is None: counter0 = tgrp['counter'][-1] if vel0 is None: vel0 = tgrp['vel'][-1, :, :] if timestep is None: self.timestep = self.restart_h5['/restart/timestep'][()] self._restart_add_hooks(self.restart_h5, ff) # Verify the hooks: combine thermostat and barostat if present self._verify_hooks() # The integrator needs masses. If not available, take default values. if ff.system.masses is None: ff.system.set_standard_masses() self.masses = ff.system.masses # Set random initial velocities if needed. if vel0 is None: self.vel = get_random_vel(temp0, scalevel0, self.masses) else: self.vel = vel0.copy() # Working arrays self.gpos = np.zeros(self.pos.shape, float) self.delta = np.zeros(self.pos.shape, float) self.vtens = np.zeros((3, 3), float) # Tracks quality of the conserved quantity self._cons_err_tracker = ConsErrTracker(restart_h5) Iterative.__init__(self, ff, state, self.hooks, counter0)
def __init__(self, ff, timestep, state=None, hooks=None, vel0=None, temp0=300, scalevel0=True, time0=0.0, ndof=None, counter0=0): """ **Arguments:** ff A ForceField instance timestep The integration time step (in atomic units) **Optional arguments:** state A list with state items. State items are simple objects that take or derive a property from the current state of the iterative algorithm. hooks A function (or a list of functions) that is called after every iterative. vel0 An array with initial velocities. If not given, random velocities are sampled from the Maxwell-Boltzmann distribution corresponding to the optional arguments temp0 and scalevel0 temp0 The (initial) temperature for the random initial velocities scalevel0 If True (the default), the random velocities are rescaled such that the instantaneous temperature coincides with temp0. time0 The time associated with the initial state. ndof When given, this option overrides the number of degrees of freedom determined from internal heuristics. When ndof is not given, its default value depends on the thermostat used. In most cases it is 3*natom, except for the NHC thermostat where the number if internal degrees of freedom is counted. The ndof attribute is used to derive the temperature from the kinetic energy. counter0 The counter value associated with the initial state. """ # Assign init arguments self.pos = ff.system.pos.copy() self.timestep = timestep self.time = time0 self.ndof = ndof # The integrator needs masses. If not available, take default values. if ff.system.masses is None: ff.system.set_standard_masses() self.masses = ff.system.masses # Set random initial velocities if needed. if vel0 is None: self.vel = get_random_vel(temp0, scalevel0, self.masses) else: self.vel = vel0.copy() # Working arrays self.gpos = np.zeros(self.pos.shape, float) self.delta = np.zeros(self.pos.shape, float) self.vtens = np.zeros((3, 3), float) # Tracks quality of the conserved quantity self._cons_err_tracker = ConsErrTracker() Iterative.__init__(self, ff, state, hooks, counter0)
def __init__(self, ff, timestep=None, state=None, hooks=None, vel0=None, temp0=300, scalevel0=True, time0=None, ndof=None, counter0=None, restart_h5=None): """ **Arguments:** ff A ForceField instance **Optional arguments:** timestep The integration time step (in atomic units) state A list with state items. State items are simple objects that take or derive a property from the current state of the iterative algorithm. hooks A function (or a list of functions) that is called after every iterative. vel0 An array with initial velocities. If not given, random velocities are sampled from the Maxwell-Boltzmann distribution corresponding to the optional arguments temp0 and scalevel0 temp0 The (initial) temperature for the random initial velocities scalevel0 If True (the default), the random velocities are rescaled such that the instantaneous temperature coincides with temp0. time0 The time associated with the initial state. ndof When given, this option overrides the number of degrees of freedom determined from internal heuristics. When ndof is not given, its default value depends on the thermostat used. In most cases it is 3*natom, except for the NHC thermostat where the number if internal degrees of freedom is counted. The ndof attribute is used to derive the temperature from the kinetic energy. counter0 The counter value associated with the initial state. restart_h5 HDF5 object containing the restart information """ # Assign init arguments if timestep is None and restart_h5 is None: raise AssertionError('No Verlet timestep is found') self.ndof = ndof self.hooks = hooks self.restart_h5 = restart_h5 # Retrieve the necessary properties if restarting. Restart objects # are overwritten by optional arguments in VerletIntegrator if self.restart_h5 is None: # set None variables to default value if time0 is None: time0 = 0.0 if counter0 is None: counter0 = 0 self.pos = ff.system.pos.copy() self.rvecs = ff.system.cell.rvecs.copy() self.timestep = timestep self.time = time0 else: # Arguments associated with the unit cell and positions are always retrieved tgrp = self.restart_h5['trajectory'] self.pos = tgrp['pos'][-1,:,:] ff.update_pos(self.pos) if 'cell' in tgrp: self.rvecs = tgrp['cell'][-1,:,:] ff.update_rvecs(self.rvecs) else: self.rvecs = None # Arguments which can be provided in the VerletIntegrator object are only # taken from the restart file if not provided explicitly if time0 is None: self.time = tgrp['time'][-1] else: self.time = time0 if counter0 is None: counter0 = tgrp['counter'][-1] if vel0 is None: vel0 = tgrp['vel'][-1,:,:] if timestep is None: self.timestep = self.restart_h5['/restart/timestep'][()] self._restart_add_hooks(self.restart_h5, ff) # Verify the hooks: combine thermostat and barostat if present self._verify_hooks() # The integrator needs masses. If not available, take default values. if ff.system.masses is None: ff.system.set_standard_masses() self.masses = ff.system.masses # Set random initial velocities if needed. if vel0 is None: self.vel = get_random_vel(temp0, scalevel0, self.masses) else: self.vel = vel0.copy() # Working arrays self.gpos = np.zeros(self.pos.shape, float) self.delta = np.zeros(self.pos.shape, float) self.vtens = np.zeros((3, 3), float) # Tracks quality of the conserved quantity self._cons_err_tracker = ConsErrTracker(restart_h5) Iterative.__init__(self, ff, state, self.hooks, counter0)