def prcurve(dataset):
    if dataset == "binary":
        X, y = load_spam()
        model = RidgeClassifier()
        kws = {}
    elif dataset == "multiclass":
        X, y = load_game()
        X = OrdinalEncoder().fit_transform(X)
        y = LabelEncoder().fit_transform(y)
        model = MultinomialNB()
        kws = {
            "per_class": True,
            "iso_f1_curves": True,
            "fill_area": False,
            "micro": False,
        }
    else:
        raise ValueError("uknown dataset")

    X_train, X_test, y_train, y_test = tts(X, y, test_size=0.2, shuffle=True)
    oz = PRCurve(model, ax=newfig(), **kws)
    oz.fit(X_train, y_train)
    oz.score(X_test, y_test)
    savefig(oz, "precision_recall_{}".format(dataset))
def discrimination():
    X, y = load_spam()
    oz = DiscriminationThreshold(LogisticRegression(solver="lbfgs"),
                                 ax=newfig())
    oz.fit(X, y)
    savefig(oz, "discrimination_threshold")
Example #3
0
def discrimination_threshold(ax=None):
    data = load_spam(return_dataset=True)
    X, y = data.to_pandas()

    viz = DiscriminationThreshold(RandomForestClassifier(n_estimators=10), ax=ax)
    return tts_plot(viz, X, y, score=False)
Example #4
0
def confusion_matrix(ax=None):
    data = load_spam(return_dataset=True)
    X, y = data.to_pandas()

    viz = PrecisionRecallCurve(LogisticRegression(), ax=ax)
    return tts_plot(viz, X, y)