def detect(only_snms=True): # load image load_begin = time.time() pkllistfile = open(os.path.join('video', 'pkllist.txt')) pkllist = pkllistfile.readlines() pkllistfile.close() pkllist = [pkl.strip() for pkl in pkllist] load_end = time.time() print('load: {:.4f}s'.format(load_end - load_begin)) # detection detect_begin = time.time() res = yolo_detection.detect_imgs(pkllist, nms=0, thresh=0.25) detect_end = time.time() print('total detect: {:.4f}s'.format(detect_end - detect_begin)) print('-----------------------------------') if only_snms: save_results(res, pkllist, True) else: # Run both methods save_results(res, pkllist, False) save_results(res, pkllist, True)
if __name__ == "__main__": # load image load_begin = time.time() pkllistfile = open(os.path.join('video', 'pkllist.txt')) pkllist = pkllistfile.readlines() pkllistfile.close() pkllist = [pkl.strip() for pkl in pkllist] load_end = time.time() print('load: {:.4f}s'.format(load_end - load_begin)) # detection detect_begin = time.time() if len(sys.argv) > 1 and sys.argv[1] == 'tiny': res = yolo_detection.detect_imgs(pkllist, cfg="cfg/yolov2-tiny-voc.cfg", weights="yolov2-tiny-voc.weights", data="cfg/voc.data", nms=0, thresh=0.1) elif len(sys.argv) > 1 and sys.argv[1] == 'v2': res = yolo_detection.detect_imgs(pkllist, cfg="cfg/yolov2.cfg", weights="yolov2.weights", nms=0, thresh=0.1) elif len(sys.argv) > 1 and sys.argv[1] == 'face': res = yolo_detection.detect_imgs(pkllist, cfg="cfg/yolov3-wider.cfg", weights="yolov3-wider.weights", data="cfg/wider.data", nms=0, thresh=0.1)
category_index) return image_process if __name__ == "__main__": # load image load_begin=time.time() pkllistfile=open(os.path.join('video', 'pkllist.txt')) pkllist=pkllistfile.readlines() pkllistfile.close() pkllist=[pkl.strip() for pkl in pkllist] load_end=time.time() print('load: {:.4f}s'.format(load_end - load_begin)) # detection detect_begin=time.time() res = yolo_detection.detect_imgs(pkllist, nms=0, thresh=0.25) detect_end=time.time() print('total detect: {:.4f}s'.format(detect_end - detect_begin)) # nms nms_begin=time.time() boxes, classes, scores = dsnms(res) nms_end=time.time() print('total nms: {:.4f}s'.format(nms_end - nms_begin)) # save&visualization save_begin=time.time() PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') NUM_CLASSES = 80 if not os.path.exists('video/output'): os.makedirs('video/output')
if __name__ == "__main__": # load image load_begin = time.time() pkllistfile = open(os.path.join('video', 'pkllist.txt')) pkllist = pkllistfile.readlines() pkllistfile.close() pkllist = [pkl.strip() for pkl in pkllist] load_end = time.time() print('load: {:.4f}s'.format(load_end - load_begin)) # detection detect_begin = time.time() if len(sys.argv) > 1 and sys.argv[1] == 'tiny': res = yolo_detection.detect_imgs(pkllist, cfg="cfg/tiny-yolo.cfg", weights="tiny-yolo.weights", nms=0, thresh=0.25) else: res = yolo_detection.detect_imgs(pkllist, nms=0, thresh=0.25) detect_end = time.time() print('total detect: {:.4f}s'.format(detect_end - detect_begin)) print('average detect: {:.4f}s'.format( (detect_end - detect_begin) / len(pkllist))) # nms nms_begin = time.time() if len(sys.argv) > 1 and sys.argv[1] == 'only_person': boxes, classes, scores = dsnms(res, only_person=True) else: boxes, classes, scores = dsnms(res)