def render_and_train(self): print(global_variable.green) print('Render And Train') print(global_variable.reset_color) # -------------------- show training image # -------------------- self.batch_size = 1 ax = yolo_cv.init_matplotlib_figure() h, w = self.size # -------------------- background -------------------- # self.bg_iter_valid = yolo_gluon.load_background( 'val', self.batch_size, h, w) self.bg_iter_train = yolo_gluon.load_background( 'train', self.batch_size, h, w) self.car_renderer = RenderCar(h, w, self.classes, self.ctx[0], pre_load=False) # -------------------- main loop -------------------- # while True: if (self.backward_counter % 10 == 0 or 'bg' not in locals()): bg = yolo_gluon.ImageIter_next_batch(self.bg_iter_train) bg = bg.as_in_context(self.ctx[0]) # -------------------- render dataset -------------------- # imgs, labels = self.car_renderer.render(bg, 'train', render_rate=0.5, pascal_rate=0.1) batch_xs = yolo_gluon.split_render_data(imgs, self.ctx) car_batch_ys = yolo_gluon.split_render_data(labels, self.ctx) self._train_batch(batch_xs, car_bys=car_batch_ys) # -------------------- show training image # -------------------- if self.use_fp16: img = img.astype('float32') img = yolo_gluon.batch_ndimg_2_cv2img(batch_xs[0])[0] img = yolo_cv.cv2_add_bbox(img, car_batch_ys[0][0, 0].asnumpy(), 4, use_r=0) yolo_cv.matplotlib_show_img(ax, img) print(car_batch_ys[0][0]) raw_input()
def _train_or_valid(self, mode): print(global_variable.cyan) print(mode) print(global_variable.reset_color) if mode == 'val': self.batch_size = 1 ax = yolo_cv.init_matplotlib_figure() # self.net = yolo_gluon.init_executor( # self.export_file, self.size, self.ctx[0]) # -------------------- background -------------------- # LP_generator = licence_plate_render.LPGenerator(*self.size) bg_iter = yolo_gluon.load_background(mode, self.batch_size, *self.size) # -------------------- main loop -------------------- # self.backward_counter = 0 while True: if (self.backward_counter % 3 == 0 or 'bg' not in locals()): bg = yolo_gluon.ImageIter_next_batch(bg_iter) bg = bg.as_in_context(self.ctx[0]) / 255. # -------------------- render dataset -------------------- # imgs, labels = LP_generator.add(bg, self.LP_r_max, add_rate=0.5) if mode == 'train': batch_xs = yolo_gluon.split_render_data(imgs, self.ctx) batch_ys = yolo_gluon.split_render_data(labels, self.ctx) self._train_batch_LP(batch_xs, batch_ys) elif mode == 'val': batch_out = self.net(imgs) pred = self.predict_LP(batch_out) img = yolo_gluon.batch_ndimg_2_cv2img(imgs)[0] labels = labels.asnumpy() img, _ = LP_generator.project_rect_6d.add_edges( img, labels[0, 0, 1:7]) img, clipped_LP = LP_generator.project_rect_6d.add_edges( img, pred[1:]) yolo_cv.matplotlib_show_img(ax, img) print(labels) print(pred) raw_input('--------------------------------------------------')
def valid(self): print(global_variable.cyan) print('Valid') bs = 1 # batch size = 1 h, w = self.size # init two matplotlib figures ax1 = yolo_cv.init_matplotlib_figure() ax2 = yolo_cv.init_matplotlib_figure() # init radar figure for vizualizing class distribution radar_prob = yolo_cv.RadarProb(self.num_class, self.classes) # init background, LP adder, car renderer BG_iter = yolo_gluon.load_background('val', bs, h, w) LP_generator = licence_plate_render.LPGenerator(h, w) car_renderer = RenderCar(h, w, self.classes, self.ctx[0], pre_load=False) for bg in BG_iter: # select background bg = bg.data[0].as_in_context(self.ctx[0]) # b*RGB*w*h # render images, type(imgs) = mxnet.ndarray imgs, labels = car_renderer.render(bg, 'valid', pascal_rate=0.5, render_rate=0.9) imgs, LP_labels = LP_generator.add(imgs, self.LP_r_max, add_rate=0.8) # return all_output[::-1], [LP_output] x1, x2, x3, LP_x = self.net.forward(is_train=False, data=imgs) outs = self.predict([x1, x2, x3]) LP_outs = self.predict_LP([LP_x]) # convert ndarray to np.array img = yolo_gluon.batch_ndimg_2_cv2img(imgs)[0] # draw licence plate border img, clipped_LP = LP_generator.project_rect_6d.add_edges(img, LP_outs[0, 1:]) yolo_cv.matplotlib_show_img(ax2, clipped_LP) # draw car border img = yolo_cv.cv2_add_bbox(img, labels[0, 0].asnumpy(), 4, use_r=0) img = yolo_cv.cv2_add_bbox(img, outs[0], 5, use_r=0) yolo_cv.matplotlib_show_img(ax1, img) # vizualize class distribution radar_prob.plot(outs[0, 0], outs[0, -self.num_class:]) raw_input('next')
def valid(self): print(global_variable.cyan) print('Valid') bs = 1 h, w = self.size ax1 = yolo_cv.init_matplotlib_figure() radar_prob = yolo_cv.RadarProb(self.num_class, self.classes) BG_iter = yolo_gluon.load_background('val', bs, h, w) car_renderer = RenderCar(h, w, self.classes, self.ctx[0], pre_load=False) for bg in BG_iter: # -------------------- get image -------------------- # bg = bg.data[0].as_in_context(self.ctx[0]) # b*RGB*w*h imgs, labels = car_renderer.render(bg, 'valid', pascal_rate=0.5, render_rate=0.9) # -------------------- predict -------------------- # net_out = self.net.forward(is_train=False, data=imgs) # net_out = [x1, x2, x3], which shapes are # (1L, 640L, 3L, 30L), (1L, 160L, 3L, 30L), (1L, 40L, 3L, 30L) outs = self.predict(net_out) # -------------------- show -------------------- # img = yolo_gluon.batch_ndimg_2_cv2img(imgs)[0] img = yolo_cv.cv2_add_bbox(img, labels[0, 0].asnumpy(), 4, use_r=0) img = yolo_cv.cv2_add_bbox(img, outs[0], 5, use_r=0) yolo_cv.matplotlib_show_img(ax1, img) radar_prob.plot3d(outs[0, 0], outs[0, -self.num_class:]) raw_input('next')
axs.append(fig.add_subplot(4, 4, i + 1)) for bg in bg_iter: bg = bg.data[0].as_in_context(ctx[0]) imgs, labels = generator.render(bg) score_x, class_x = net(imgs) print(score_x.shape) print(class_x.shape) imgs = yolo_gluon.batch_ndimg_2_cv2img(imgs) for i in range(bs): ax = axs[i] s = score_x[i] s = nd.sigmoid(s.reshape(-1)).asnumpy() p = class_x[i, 0].asnumpy() p = np.argmax(p, axis=-1) yolo_cv.matplotlib_show_img(ax, imgs[i]) ax.plot(range(8, 384, 16), (1 - s) * 160) ax.axis('off') s = np.concatenate(([0], s, [0])) # zero-dimensional arrays cannot be concatenated # Find peaks text = '' for i in range(24): if s[i + 1] > 0.2 and s[i + 1] > s[i + 2] and s[i + 1] > s[i]: c = int(p[i]) text = text + cls_names[c] print(text) raw_input('press Enter to next batch....')