def __init__(self,ops,device): self.ops = ops self.img_size = ops.img_size self.classes = load_classes(parse_data_cfg(ops.data_cfg)['names']) self.num_classes = len(self.classes) if "tiny" in ops.detect_network: a_scalse = 416./ops.img_size anchors=[(10, 14), (23, 27), (37, 58), (81, 82), (135, 169), (344, 319)] anchors_new = [ (int(anchors[j][0]/a_scalse),int(anchors[j][1]/a_scalse)) for j in range(len(anchors)) ] model = Yolov3Tiny(self.num_classes,anchors = anchors_new) weights = ops.detect_model print('network : yolov3 - tiny') else: a_scalse = 416./ops.img_size anchors=[(10,13), (16,30), (33,23), (30,61), (62,45), (59,119), (116,90), (156,198), (373,326)] anchors_new = [ (int(anchors[j][0]/a_scalse),int(anchors[j][1]/a_scalse)) for j in range(len(anchors)) ] model = Yolov3(self.num_classes,anchors = anchors_new) weights = ops.detect_model print('network : yolov3') self.model = model yolo_model_param(self.model)# 显示模型参数 self.device = device self.use_cuda = torch.cuda.is_available() # Load weights if os.access(weights,os.F_OK):# 判断模型文件是否存在 self.model.load_state_dict(torch.load(weights, map_location=self.device)['model']) else: print('------- >>> error model not exists') return False self.model.to(self.device).eval()#模型设置为 eval
def __init__(self, data_cfg, model_cfg, model_path, img_size, conf_thres=0.35, nms_thres=0.45): print('model_path : ', model_path) self.img_size = img_size self.conf_thres = conf_thres self.nms_thres = nms_thres self.classes = load_classes(parse_data_cfg(data_cfg)['names']) self.num_classes = len(self.classes) if "tiny" in model_cfg: print('YOLO V3 - tiny') a_scalse = 416. / img_size anchors = [(10, 14), (23, 27), (37, 58), (81, 82), (135, 169), (344, 319)] anchors_new = [(int(anchors[j][0] / a_scalse), int(anchors[j][1] / a_scalse)) for j in range(len(anchors))] model = Yolov3Tiny(self.num_classes, anchors=anchors_new) weights = model_path else: print('YOLO V3') a_scalse = 416. / img_size anchors = [(10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116, 90), (156, 198), (373, 326)] anchors_new = [(int(anchors[j][0] / a_scalse), int(anchors[j][1] / a_scalse)) for j in range(len(anchors))] model = Yolov3(self.num_classes, anchors=anchors_new) weights = model_path self.model = model #show_model_param(self.model)# 显示模型参数 self.device = select_device() # 运行硬件选择 self.use_cuda = torch.cuda.is_available() # Load weights if os.access(weights, os.F_OK): # 判断模型文件是否存在 self.model.load_state_dict( torch.load(weights, map_location=self.device)['model']) else: print('------- >>> plus yolo tiny <dinner> error model not exists') return False self.model.to(self.device).eval() #模型设置为 eval
def train(data_cfg='cfg/voc.data', accumulate=1): device = select_device() # Config get_data_cfg = parse_data_cfg(data_cfg) #返回训练配置参数,类型:字典 gpus = get_data_cfg['gpus'] num_workers = int(get_data_cfg['num_workers']) cfg_model = get_data_cfg['cfg_model'] train_path = get_data_cfg['train'] valid_ptah = get_data_cfg['valid'] num_classes = int(get_data_cfg['classes']) finetune_model = get_data_cfg['finetune_model'] batch_size = int(get_data_cfg['batch_size']) img_size = int(get_data_cfg['img_size']) multi_scale = get_data_cfg['multi_scale'] epochs = int(get_data_cfg['epochs']) lr_step = str(get_data_cfg['lr_step']) if multi_scale == 'True': multi_scale = True else: multi_scale = False print('data_cfg : ', data_cfg) print('voc.data config len : ', len(get_data_cfg)) print('gpus : ', gpus) print('num_workers : ', num_workers) print('model : ', cfg_model) print('finetune_model : ', finetune_model) print('train_path : ', train_path) print('valid_ptah : ', valid_ptah) print('num_classes : ', num_classes) print('batch_size : ', batch_size) print('img_size : ', img_size) print('multi_scale : ', multi_scale) print('lr_step : ', lr_step) # load model if "tiny" in cfg_model: a_scalse = 416. / img_size anchors = [(10, 14), (23, 27), (37, 58), (81, 82), (135, 169), (344, 319)] anchors_new = [(int(anchors[j][0] / a_scalse), int(anchors[j][1] / a_scalse)) for j in range(len(anchors))] print('old anchors : ', anchors) model = Yolov3Tiny(num_classes, anchors=anchors_new) weights = './weights-yolov3-tiny/' else: a_scalse = 416. / img_size anchors = [(10, 13), (16, 30), (33, 23), (30, 61), (62, 45), (59, 119), (116, 90), (156, 198), (373, 326)] anchors_new = [(int(anchors[j][0] / a_scalse), int(anchors[j][1] / a_scalse)) for j in range(len(anchors))] model = Yolov3(num_classes, anchors=anchors_new) weights = './weights-yolov3/' # make dir save model document if not os.path.exists(weights): os.mkdir(weights) latest = weights + 'latest.pt' best = weights + 'best.pt' # Optimizer lr0 = 0.001 # initial learning rate optimizer = torch.optim.SGD(model.parameters(), lr=lr0, momentum=0.9, weight_decay=0.0005) start_epoch = 0 model = model.to(device) print(finetune_model) if os.access(finetune_model, os.F_OK): print( '\n/************************** load_model *************************/' ) print(finetune_model) load_model(model, torch.load(finetune_model)) else: print('finetune_model not exist !') milestones = [int(i) for i in lr_step.split(",")] print('milestones : ', milestones) scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[int(i) for i in lr_step.split(",")], gamma=0.1, last_epoch=start_epoch - 1) # Initialize distributed training if torch.cuda.device_count() > 1: dist.init_process_group(backend=opt.backend, init_method=opt.dist_url, world_size=opt.world_size, rank=opt.rank) model = torch.nn.parallel.DistributedDataParallel(model) # Dataset print('multi_scale : ', multi_scale) dataset = LoadImagesAndLabels(train_path, batch_size=batch_size, img_size=img_size, augment=True, multi_scale=multi_scale) print('--------------->>> imge num : ', dataset.__len__()) # Dataloader dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=True, pin_memory=False, drop_last=False, collate_fn=dataset.collate_fn) # Start training t = time.time() model_info(model) nB = len(dataloader) n_burnin = min(round(nB / 5 + 1), 1000) # burn-in batches best_loss = float('inf') test_loss = float('inf') for epoch in range(start_epoch, epochs): print('') model.train() scheduler.step() mloss = defaultdict(float) # mean loss for i, (imgs, targets, img_path_, _) in enumerate(dataloader): multi_size = imgs.size() imgs = imgs.to(device) targets = targets.to(device) nt = len(targets) if nt == 0: # if no targets continue continue # SGD burn-in if epoch == 0 and i <= n_burnin: lr = lr0 * (i / n_burnin)**4 for x in optimizer.param_groups: x['lr'] = lr # Run model pred = model(imgs) # Build targets target_list = build_targets(model, targets) # Compute loss loss, loss_dict = compute_loss(pred, target_list) # Compute gradient loss.backward() # Accumulate gradient for x batches before optimizing if (i + 1) % accumulate == 0 or (i + 1) == nB: optimizer.step() optimizer.zero_grad() # Running epoch-means of tracked metrics for key, val in loss_dict.items(): mloss[key] = (mloss[key] * i + val) / (i + 1) print( 'Epoch {:3d}/{:3d}, Batch {:6d}/{:6d}, Img_size {}x{}, nTargets {}, lr {:.6f}, loss: xy {:.2f}, wh {:.2f}, ' 'conf {:.2f}, cls {:.2f}, total {:.2f}, time {:.3f}s'.format( epoch, epochs - 1, i, nB - 1, multi_size[2], multi_size[3], nt, scheduler.get_lr()[0], mloss['xy'], mloss['wh'], mloss['conf'], mloss['cls'], mloss['total'], time.time() - t), end='\r') s = ('%8s%12s' + '%10.3g' * 7) % ( '%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, nB - 1), mloss['xy'], mloss['wh'], mloss['conf'], mloss['cls'], mloss['total'], nt, time.time() - t) t = time.time() if epoch % 5 == 0 and epoch > 0: # Calculate mAP print('\n') with torch.no_grad(): print("-------" * 5 + "testing" + "-------" * 5) results = test.test(cfg_model, data_cfg, batch_size=batch_size, img_size=img_size, model=model) # Update best loss test_loss = results[4] if test_loss < best_loss: best_loss = test_loss if True: # Create checkpoint chkpt = { 'epoch': epoch, 'best_loss': best_loss, 'model': model.module.state_dict() if type(model) is nn.parallel.DistributedDataParallel else model.state_dict(), 'optimizer': optimizer.state_dict() } # Save latest checkpoint torch.save(chkpt, latest) # Save best checkpoint if best_loss == test_loss and epoch % 5 == 0: torch.save(chkpt, best) # Save backup every 10 epochs (optional) if epoch > 0 and epoch % 5 == 0: torch.save(chkpt, weights + 'Detect%g.pt' % epoch) # Delete checkpoint del chkpt
def train(data_cfg='cfg/voc_coco.data', accumulate=1): device = select_device() # Configure run get_data_cfg = parse_data_cfg(data_cfg) #返回训练配置参数,类型:字典 gpus = get_data_cfg['gpus'] num_workers = int(get_data_cfg['num_workers']) cfg_model = get_data_cfg['cfg_model'] train_path = get_data_cfg['train'] valid_ptah = get_data_cfg['valid'] num_classes = int(get_data_cfg['classes']) finetune_model = get_data_cfg['finetune_model'] batch_size = int(get_data_cfg['batch_size']) img_size = int(get_data_cfg['img_size']) multi_scale = get_data_cfg['multi_scale'] epochs = int(get_data_cfg['epochs']) lr_step = str(get_data_cfg['lr_step']) if multi_scale == 'True': multi_scale = True else: multi_scale = False print('data_cfg : ', data_cfg) print('voc.data config len : ', len(get_data_cfg)) print('gpus : ', gpus) print('num_workers : ', num_workers) print('model : ', cfg_model) print('finetune_model : ', finetune_model) print('train_path : ', train_path) print('valid_ptah : ', valid_ptah) print('num_classes : ', num_classes) print('batch_size : ', batch_size) print('img_size : ', img_size) print('multi_scale : ', multi_scale) print('lr_step : ', lr_step) # load model if "-tiny" in cfg_model: model = Yolov3Tiny(num_classes) weights = './weights-yolov3-tiny/' else: model = Yolov3(num_classes) weights = './weights-yolov3/' # mkdir save model document if not os.path.exists(weights): os.mkdir(weights) model = model.to(device) latest = weights + 'latest.pt' best = weights + 'best.pt' # Optimizer lr0 = 0.001 # initial learning rate optimizer = torch.optim.SGD(model.parameters(), lr=lr0, momentum=0.9, weight_decay=0.0005) start_epoch = 0 if os.access(finetune_model, os.F_OK): # load retrain/finetune_model print('loading yolo-v3 finetune_model ~~~~~~', finetune_model) not_load_filters = 3 * (80 + 5) # voc: 3*(20+5), coco: 3*(80+5)=255 chkpt = torch.load(finetune_model, map_location=device) model.load_state_dict( { k: v for k, v in chkpt['model'].items() if v.numel() > 1 and v.shape[0] != not_load_filters }, strict=False) # model.load_state_dict(chkpt['model']) start_epoch = chkpt['epoch'] if chkpt['optimizer'] is not None: optimizer.load_state_dict(chkpt['optimizer']) best_loss = chkpt['best_loss'] # Set scheduler (reduce lr at epochs 218, 245, i.e. batches 400k, 450k) gamma:学习率下降的乘数因子 milestones = [int(i) for i in lr_step.split(",")] print('milestones : ', milestones) scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=[int(i) for i in lr_step.split(",")], gamma=0.1, last_epoch=start_epoch - 1) # Initialize distributed training if torch.cuda.device_count() > 1: dist.init_process_group(backend=opt.backend, init_method=opt.dist_url, world_size=opt.world_size, rank=opt.rank) model = torch.nn.parallel.DistributedDataParallel(model) # Dataset print('multi_scale : ', multi_scale) dataset = LoadImagesAndLabels(train_path, batch_size=batch_size, img_size=img_size, augment=True, multi_scale=multi_scale) # Dataloader dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=True, pin_memory=False, drop_last=False, collate_fn=dataset.collate_fn) # Start training t = time.time() model_info(model) nB = len(dataloader) n_burnin = min(round(nB / 5 + 1), 1000) # burn-in batches best_loss = float('inf') test_loss = float('inf') for epoch in range(start_epoch, epochs): print() model.train() # Update scheduler scheduler.step() mloss = defaultdict(float) # mean loss for i, (imgs, targets, img_path_, _) in enumerate(dataloader): multi_size = imgs.size() imgs = imgs.to(device) targets = targets.to(device) nt = len(targets) if nt == 0: # if no targets continue continue # SGD burn-in if epoch == 0 and i <= n_burnin: lr = lr0 * (i / n_burnin)**4 for x in optimizer.param_groups: x['lr'] = lr # Run model pred = model(imgs) # Build targets target_list = build_targets(model, targets) # Compute loss loss, loss_dict = compute_loss(pred, target_list) # Compute gradient loss.backward() # Accumulate gradient for x batches before optimizing if (i + 1) % accumulate == 0 or (i + 1) == nB: optimizer.step() optimizer.zero_grad() # Running epoch-means of tracked metrics for key, val in loss_dict.items(): mloss[key] = (mloss[key] * i + val) / (i + 1) print( 'Epoch {:3d}/{:3d}, Batch {:6d}/{:6d}, Img_size {}x{}, nTargets {}, lr {:.6f}, loss: xy {:.2f}, wh {:.2f}, ' 'conf {:.2f}, cls {:.2f}, total {:.2f}, time {:.3f}s'.format( epoch, epochs - 1, i, nB - 1, multi_size[2], multi_size[3], nt, scheduler.get_lr()[0], mloss['xy'], mloss['wh'], mloss['conf'], mloss['cls'], mloss['total'], time.time() - t)) s = ('%8s%12s' + '%10.3g' * 7) % ( '%g/%g' % (epoch, epochs - 1), '%g/%g' % (i, nB - 1), mloss['xy'], mloss['wh'], mloss['conf'], mloss['cls'], mloss['total'], nt, time.time() - t) t = time.time() if epoch % 10 == 0: # Calculate mAP print('\n') with torch.no_grad(): print("-------" * 5 + "testing" + "-------" * 5) results = test.test(cfg_model, data_cfg, batch_size=batch_size, img_size=img_size, model=model) # Update best loss test_loss = results[4] if test_loss < best_loss: best_loss = test_loss if True: # Create checkpoint chkpt = { 'epoch': epoch, 'best_loss': best_loss, 'model': model.module.state_dict() if type(model) is nn.parallel.DistributedDataParallel else model.state_dict(), 'optimizer': optimizer.state_dict() } # Save latest checkpoint torch.save(chkpt, latest) # Save best checkpoint if best_loss == test_loss and epoch % 5 == 0: torch.save(chkpt, best) # Save backup every 10 epochs (optional) if epoch > 0 and epoch % 5 == 0: torch.save(chkpt, weights + 'backup%g.pt' % epoch) # Delete checkpoint del chkpt
def detect( model_path, root_path, cfg, data_cfg, img_size=416, conf_thres=0.5, nms_thres=0.5, ): classes = load_classes(parse_data_cfg(data_cfg)['names']) num_classes = len(classes) # Initialize model if "-tiny" in cfg: model = Yolov3Tiny(num_classes) weights = model_path else: model = Yolov3(num_classes) weights = model_path show_model_param(model)# 显示模型参数 device = select_device() # 运行硬件选择 use_cuda = torch.cuda.is_available() # Load weights if os.access(weights,os.F_OK):# 判断模型文件是否存在 model.load_state_dict(torch.load(weights, map_location=device)['model']) else: print('error model not exists') return False model.to(device).eval()#模型设置为 eval colors = [(v // 32 * 64 + 64, (v // 8) % 4 * 64, v % 8 * 32) for v in range(1, num_classes + 1)][::-1] for img_name in os.listdir(root_path): img_path = root_path + img_name im0 = cv2.imread(img_path) print("---------------------") t = time.time() img = process_data(im0, img_size) if use_cuda: torch.cuda.synchronize() t1 = time.time() print("process time:", t1-t) img = torch.from_numpy(img).unsqueeze(0).to(device) pred, _ = model(img)#图片检测 if use_cuda: torch.cuda.synchronize() t2 = time.time() print("inference time:", t2-t1) detections = non_max_suppression(pred, conf_thres, nms_thres)[0] # nms if use_cuda: torch.cuda.synchronize() t3 = time.time() print("get res time:", t3-t2) if detections is None or len(detections) == 0: continue # Rescale boxes from 416 to true image size detections[:, :4] = scale_coords(img_size, detections[:, :4], im0.shape).round() result = [] for res in detections: result.append((classes[int(res[-1])], float(res[4]), [int(res[0]), int(res[1]), int(res[2]), int(res[3])])) if use_cuda: torch.cuda.synchronize() s2 = time.time() print("detect time:", s2 - t) print(result) # Draw bounding boxes and labels of detections for *xyxy, conf, cls_conf, cls in detections: label = '%s %.2f' % (classes[int(cls)], conf) plot_one_box(xyxy, im0, label=label, color=colors[int(cls)]) cv2.namedWindow('result',0) cv2.imshow("result", im0) key = cv2.waitKey(0) if key == 27: break
def test(cfg, data_cfg, batch_size=16, img_size=416, iou_thres=0.5, conf_thres=0.3, nms_thres=0.5, model=None): # Configure run data_cfg = parse_data_cfg(data_cfg) nc = int(data_cfg['classes']) # number of classes test_path = data_cfg['valid'] # path to test images names = load_classes(data_cfg['names']) # class names if model is None: device = select_device() num_classes = nc # Initialize model if "-tiny" in cfg: model = Yolov3Tiny(num_classes).to(device) # weights = 'weights-yolov3-tiny/best.pt' weights = "./yolov3-tiny_coco.pt" else: model = Yolov3(num_classes).to(device) # weights = 'weights-yolov3/best.pt' weights = "./finetune-weight/yolov3_coco.pt" # Load weights model.load_state_dict( torch.load(weights, map_location=device)['model']) if torch.cuda.device_count() > 1: model = nn.DataParallel(model) else: device = next(model.parameters()).device # get model device print("using device: {}".format(device)) # Dataloader dataset = LoadImagesAndLabels(test_path, batch_size, img_size=img_size, augment=False) dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=0, pin_memory=False, collate_fn=dataset.collate_fn) seen = 0 model.eval() print(('%20s' + '%10s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP', 'F1')) loss, p, r, f1, mp, mr, map, mf1 = 0., 0., 0., 0., 0., 0., 0., 0. jdict, stats, ap, ap_class = [], [], [], [] for batch_i, (imgs, targets, paths, shapes) in enumerate(tqdm(dataloader, desc='Computing mAP')): targets = targets.to(device) nt = len(targets) if nt == 0: # if no targets continue continue imgs = imgs.to(device) # Run model inf_out, train_out = model(imgs) # inference and training outputs # Build targets target_list = build_targets(model, targets) # Compute loss loss_i, _ = compute_loss(train_out, target_list) loss += loss_i.item() # Run NMS output = non_max_suppression(inf_out, conf_thres=conf_thres, nms_thres=nms_thres) # Statistics per image for si, pred in enumerate(output): labels = targets[targets[:, 0] == si, 1:] correct, detected = [], [] tcls = torch.Tensor() seen += 1 if pred is None: if len(labels): tcls = labels[:, 0].cpu() # target classes stats.append( (correct, torch.Tensor(), torch.Tensor(), tcls)) continue # Append to pycocotools JSON dictionary if len(labels): # Extract target boxes as (x1, y1, x2, y2) tbox = xywh2xyxy(labels[:, 1:5]) * img_size # target boxes tcls = labels[:, 0] # target classes for *pbox, pconf, pcls_conf, pcls in pred: if pcls not in tcls: correct.append(0) continue # Best iou, index between pred and targets iou, bi = bbox_iou(pbox, tbox).max(0) # If iou > threshold and class is correct mark as correct if iou > iou_thres and bi not in detected: correct.append(1) detected.append(bi) else: correct.append(0) else: # If no labels add number of detections as incorrect correct.extend([0] * len(pred)) # Append Statistics (correct, conf, pcls, tcls) stats.append( (correct, pred[:, 4].cpu(), pred[:, 6].cpu(), tcls.cpu())) # Compute statistics stats_np = [np.concatenate(x, 0) for x in list(zip(*stats))] nt = np.bincount(stats_np[3].astype(np.int64), minlength=nc) # number of targets per class if len(stats_np): p, r, ap, f1, ap_class = ap_per_class(*stats_np) mp, mr, map, mf1 = p.mean(), r.mean(), ap.mean(), f1.mean() # Print results pf = '%20s' + '%10.3g' * 6 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map, mf1), end='\n\n') # Print results per class if nc > 1 and len(stats_np): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap[i], f1[i])) # Return results return mp, mr, map, mf1, loss
def detect( model_path, classify_model_path, label_path, root_path, cfg, data_cfg, img_size=416, conf_thres=0.5, nms_thres=0.5, ): classes = load_classes(parse_data_cfg(data_cfg)['names']) num_classes = len(classes) # Initialize model if "-tiny" in cfg: model = Yolov3Tiny(num_classes) weights = model_path else: model = Yolov3(num_classes) weights = model_path show_model_param(model) # 显示模型参数 device = select_device(False) # 运行硬件选择 classify_model, labels_dogs_list = Create_Classify_Model( device, classify_model_path, label_path) # Load weights if os.access(weights, os.F_OK): # 判断模型文件是否存在 model.load_state_dict( torch.load(weights, map_location=device)['model']) else: print('error model not exists') return False model.to(device).eval() # 设置 模型 eval colors = [(v // 32 * 64 + 64, (v // 8) % 4 * 64, v % 8 * 32) for v in range(1, num_classes + 1)][::-1] use_cuda = torch.cuda.is_available() for img_name in os.listdir(root_path): img_path = root_path + img_name im0 = cv2.imread(img_path) im_c = cv2.imread(img_path) print("---------------------") t = time.time() img = process_data(im0, img_size) if use_cuda: torch.cuda.synchronize() t1 = time.time() print("process time:", t1 - t) img = torch.from_numpy(img).unsqueeze(0).to(device) pred, _ = model(img) if use_cuda: torch.cuda.synchronize() t2 = time.time() print("inference time:", t2 - t1) detections = non_max_suppression(pred, conf_thres, nms_thres)[0] if use_cuda: torch.cuda.synchronize() t3 = time.time() print("get res time:", t3 - t2) if detections is None or len(detections) == 0: continue # Rescale boxes from 416 to true image size detections[:, :4] = scale_coords(img_size, detections[:, :4], im0.shape).round() result = [] for res in detections: result.append( (classes[int(res[-1])], float(res[4]), [int(res[0]), int(res[1]), int(res[2]), int(res[3])])) if use_cuda: torch.cuda.synchronize() s2 = time.time() print("detect time:", s2 - t) print(result) # Draw bounding boxes and labels of detections for *xyxy, conf, cls_conf, cls in detections: label = '%s %.2f' % (classes[int(cls)], conf) #------------------------------------------------------------------- plot_one_box(xyxy, im0, label=label, color=colors[int(cls)]) x_1 = int(xyxy[0]) y_1 = int(xyxy[1]) x_2 = int(xyxy[2]) y_2 = int(xyxy[3]) #-------------------- img_crop_ = cv2.resize(im_c[y_1:y_2, x_1:x_2, :], (224, 224), interpolation=cv2.INTER_CUBIC) img_crop_ = img_crop_.astype(np.float32) img_crop_ = prewhiten(img_crop_) img_crop_ = torch.from_numpy(img_crop_) img_crop_ = img_crop_.unsqueeze_(0) img_crop_ = img_crop_.permute(0, 3, 1, 2) if use_cuda: # img_crop_ = img_crop_.cuda() # (bs, 3, h, w) outputs = F.softmax(classify_model(img_crop_.float()), dim=1) outputs = outputs[0] outputx = outputs.cpu().detach().numpy() # print('output: ',output) max_index = np.argmax(outputx) scorex_ = outputx[max_index] label_dog_ = labels_dogs_list[max_index] print('label_dog_ : ', label_dog_) plot_one_box((x_1, y_1 + 20, x_2, y_2), im0, label=label_dog_ + '_' + '%.2f' % (scorex_), color=colors[int(cls)]) #----------------------- cv2.namedWindow('crop', 0) cv2.imshow('crop', im_c[y_1:y_2, x_1:x_2, :]) cv2.namedWindow('result', 0) cv2.imshow("result", im0) key = cv2.waitKey(0) if key == 27: break