Example #1
0
 def _chunk_io(self, dobj, cache=True, local_only=False):
     gobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     for subset in gobjs:
         yield YTDataChunk(dobj,
                           "io", [subset],
                           self._count_selection(dobj, [subset]),
                           cache=cache)
 def _chunk_spatial(self, dobj, ngz, sort=None, preload_fields=None):
     sobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     for i, og in enumerate(sobjs):
         if ngz > 0:
             g = og.retrieve_ghost_zones(ngz, [], smoothed=True)
         else:
             g = og
         yield YTDataChunk(dobj, "spatial", [g], None)
Example #3
0
 def _chunk_spatial(self, dobj, ngz, sort=None, preload_fields=None):
     sobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     for og in sobjs:
         with og._expand_data_files():
             if ngz > 0:
                 g = og.retrieve_ghost_zones(ngz, [], smoothed=True)
             else:
                 g = og
             yield YTDataChunk(dobj, "spatial", [g])
Example #4
0
 def _chunk_io(
     self,
     dobj,
     cache=True,
     local_only=False,
     preload_fields=None,
     chunk_sizing="auto",
 ):
     # local_only is only useful for inline datasets and requires
     # implementation by subclasses.
     if preload_fields is None:
         preload_fields = []
     preload_fields, _ = self._split_fields(preload_fields)
     gfiles = defaultdict(list)
     gobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     fast_index = dobj._current_chunk._fast_index
     for g in gobjs:
         # Force to be a string because sometimes g.filename is None.
         gfiles[str(g.filename)].append(g)
     # We can apply a heuristic here to make sure we aren't loading too
     # many grids all at once.
     if chunk_sizing == "auto":
         chunk_ngrids = len(gobjs)
         if chunk_ngrids > 0:
             nproc = int(
                 ytcfg.get("yt", "internals", "global_parallel_size"))
             chunking_factor = np.ceil(self._grid_chunksize * nproc /
                                       chunk_ngrids).astype("int")
             size = max(self._grid_chunksize // chunking_factor, 1)
         else:
             size = self._grid_chunksize
     elif chunk_sizing == "config_file":
         size = ytcfg.get("yt", "chunk_size")
     elif chunk_sizing == "just_one":
         size = 1
     elif chunk_sizing == "old":
         size = self._grid_chunksize
     else:
         raise RuntimeError(
             f"{chunk_sizing} is an invalid value for the 'chunk_sizing' argument."
         )
     for fn in sorted(gfiles):
         gs = gfiles[fn]
         for grids in (gs[pos:pos + size]
                       for pos in range(0, len(gs), size)):
             dc = YTDataChunk(
                 dobj,
                 "io",
                 grids,
                 self._count_selection(dobj, grids),
                 cache=cache,
                 fast_index=fast_index,
             )
             # We allow four full chunks to be included.
             with self.io.preload(dc, preload_fields, 4.0 * size):
                 yield dc
Example #5
0
 def _chunk_spatial(self, dobj, ngz, preload_fields=None):
     if ngz > 0:
         raise NotImplementedError
     sobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     for og in sobjs:
         if ngz > 0:
             g = og.retrieve_ghost_zones(ngz, [], smoothed=True)
         else:
             g = og
         yield YTDataChunk(dobj, "spatial", [g], None, cache=True)
 def _chunk_io(self, dobj, cache=True, local_only=False):
     """
     Since subsets are calculated per domain,
     i.e. per file, yield each domain at a time to
     organize by IO. We will eventually chunk out NMSU ART
     to be level-by-level.
     """
     oobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     for subset in oobjs:
         yield YTDataChunk(dobj, "io", [subset], None, cache=cache)
 def _chunk_all(self, dobj, cache=True, fast_index=None):
     gobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     fast_index = fast_index or getattr(dobj._current_chunk, "_fast_index",
                                        None)
     yield YTDataChunk(dobj,
                       "all",
                       gobjs,
                       dobj.size,
                       cache,
                       fast_index=fast_index)
Example #8
0
 def _chunk_io(self, dobj, cache = True, local_only = False):
     # local_only is only useful for inline datasets and requires
     # implementation by subclasses.
     gfiles = defaultdict(list)
     gobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     for g in gobjs:
         gfiles[g.id].append(g)
     for fn in sorted(gfiles):
         gs = gfiles[fn]
         yield YTDataChunk(dobj, "io", gs, self._count_selection(dobj, gs),
                           cache = cache)
Example #9
0
 def _chunk_spatial(self, dobj, ngz, sort=None, preload_fields=None):
     sobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     # This is where we will perform cutting of the Octree and
     # load-balancing.  That may require a specialized selector object to
     # cut based on some space-filling curve index.
     for og in sobjs:
         if ngz > 0:
             g = og.retrieve_ghost_zones(ngz, [], smoothed=True)
         else:
             g = og
         yield YTDataChunk(dobj, "spatial", [g])
Example #10
0
 def _chunk_io(self, dobj, cache=True, local_only=False):
     gfiles = defaultdict(list)
     gobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     for g in gobjs:
         gfiles[g.filename].append(g)
     for fn in sorted(gfiles):
         if local_only:
             gobjs = [g for g in gfiles[fn] if g.proc_num == self.comm.rank]
             gfiles[fn] = gobjs
         gs = gfiles[fn]
         count = self._count_selection(dobj, gs)
         yield YTDataChunk(dobj, "io", gs, count, cache=cache)
 def _chunk_spatial(self, dobj, ngz, sort=None, preload_fields=None):
     sobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     # We actually do not really use the data files except as input to the
     # ParticleOctreeSubset.
     # This is where we will perform cutting of the Octree and
     # load-balancing.  That may require a specialized selector object to
     # cut based on some space-filling curve index.
     for i, og in enumerate(sobjs):
         if ngz > 0:
             g = og.retrieve_ghost_zones(ngz, [], smoothed=True)
         else:
             g = og
         yield YTDataChunk(dobj, "spatial", [g])
 def _chunk_io(self, dobj, cache = True, local_only = False):
     # local_only is only useful for inline datasets and requires
     # implementation by subclasses.
     gfiles = defaultdict(list)
     gobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     for g in gobjs:
         gfiles[g.filename].append(g)
     for fn in sorted(gfiles):
         # We can apply a heuristic here to make sure we aren't loading too
         # many grids all at once.
         gs = gfiles[fn]
         size = self._grid_chunksize
         
         for grids in (gs[pos:pos + size] for pos
                       in xrange(0, len(gs), size)):
             yield YTDataChunk(dobj, "io", grids,
                     self._count_selection(dobj, grids),
                     cache = cache)
 def _chunk_spatial(self, dobj, ngz, sort=None, preload_fields=None):
     gobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     if sort in ("+level", "level"):
         giter = sorted(gobjs, key=lambda g: g.Level)
     elif sort == "-level":
         giter = sorted(gobjs, key=lambda g: -g.Level)
     elif sort is None:
         giter = gobjs
     if preload_fields is None: preload_fields = []
     preload_fields, _ = self._split_fields(preload_fields)
     if self._preload_implemented and len(preload_fields) > 0 and ngz == 0:
         giter = ChunkDataCache(list(giter), preload_fields, self)
     for i, og in enumerate(giter):
         if ngz > 0:
             g = og.retrieve_ghost_zones(ngz, [], smoothed=True)
         else:
             g = og
         size = self._count_selection(dobj, [og])
         if size == 0: continue
         # We don't want to cache any of the masks or icoords or fcoords for
         # individual grids.
         yield YTDataChunk(dobj, "spatial", [g], size, cache=False)
 def _chunk_all(self, dobj):
     oobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     # We pass the chunk both the current chunk and list of chunks,
     # as well as the referring data source
     yield YTDataChunk(dobj, "all", oobjs, None)
Example #15
0
 def _chunk_all(self, dobj, cache=True):
     oobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     yield YTDataChunk(dobj, "all", oobjs, dobj.size, cache)
Example #16
0
 def _chunk_io(self, dobj, cache=True, local_only=False):
     # _current_chunk is made from identify_base_chunk
     oobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     for chunk in oobjs:
         yield YTDataChunk(dobj, "io", [chunk], None, cache=cache)
Example #17
0
 def _chunk_io(self, dobj, cache=True, local_only=False):
     oobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     for container in oobjs:
         yield YTDataChunk(dobj, "io", [container], None, cache=cache)
Example #18
0
 def _chunk_all(self, dobj):
     oobjs = getattr(dobj._current_chunk, "objs", dobj._chunk_info)
     yield YTDataChunk(dobj, "all", oobjs, None)