def compareMeasureNG(edges,sims,ratio,names,wName=None,ciss=None,link_func=maxSim): ''' NG means this experiment is not using the grouping of cis-element ''' precs=dict.fromkeys(names) recalls=dict.fromkeys(names) ss=dict.fromkeys(names) ee=flatenDictList(edges)#ee is true edges e=mdf.global_remove(edges,ratio) for name in names: ss[name]=flatenDict(netAlignInfer\ (link_func,e,sims[name])) for name in names: precs[name]=[] recalls[name]=[] for thresh in np.arange(0,1.0,0.1): (p,r)=prEval(ee,ss[name],thresh) precs[name].append(p) recalls[name].append(r) if not wName==None: (precs[wName],recalls[wName])=doEntropyWeights(ee,e,ciss,\ link_func=link_func) return (precs,recalls,ss)
def compareMeasureNG2(edges,sims,ratio,names,proms,wName=None,ciss=None,link_func=maxSim): precs=dict.fromkeys(names) recalls=dict.fromkeys(names) ss=dict.fromkeys(names) ee=flatenDictList(edges)#ee is true edges e=mdf.global_remove(edges,ratio) for name in names: ss[name]=flatenDict(netAlignInfer\ (link_func,e,sims[name])) tss=getTS2(edges,ciss,proms,ss[name],0.1) factors=getAssoc2(*tss,min_c=0.9) for name in names: precs[name]=[] recalls[name]=[] for thresh in np.arange(0,1.0,0.1): for key in ss[name].keys(): if key[1] in factors.keys(): if key[0]+str(ciss[key[1]].slen) == tss[1][key[1]]: #print 'BEFORE',ss[name][key] ss[name][key]=1 #print 'AFTER',ss[name][key] (p,r)=prEval(ee,ss[name],thresh) precs[name].append(p) recalls[name].append(r) if not wName==None: (precs[wName],recalls[wName])=doEntropyWeights(ee,e,ciss,\ link_func=link_func) return (precs,recalls,ss)
(edges,ciss,proms)=getPickle(netp) nwSims=getPickle(pp1) nwSimsL=getPickle(pp2) dmSimsL=getPickle(pp3) ''' # Repeats of experiments N=5 ratio=0.3 x=[] y=[] x2=[] y2=[] x3=[] y3=[] ee=flatenDictList(edges) for exp_i in range(N): e=mdf.global_remove(edges,0.3) scores1=netAlignInfer(maxSim,e,nwSims) scores2=netAlignInfer(maxSim,e,nwSimsL) scores3=netAlignInfer(maxSim,e,dmSimsL) ss1=flatenDict(scores1) ss2=flatenDict(scores2) ss3=flatenDict(scores3) for thresh in np.arange(0,1,0.1): result=prEval(ee,ss1,thresh) result2=prEval(ee,ss2,thresh) result3=prEval(ee,ss3,thresh) x.append(result[0]) y.append(result[1])
return len(com)/float(len(filt)) # Repeats of experiment N=1 threshs=np.arange(0,1,0.3) precs=[] recalls=[] for j in range(3): precs.append({key:0 for key in range(len(threshs))}) recalls.append({key:0 for key in range(len(threshs))}) ee=flatenDictList(edges) # Create the filter list of the hidden edges # so that the evaluation only focus on these edges for exp_i in range(N): e=mdf.global_remove(edges,0.3) # hid_e is a list of real edges hidden entire_keys=edges.keys() subset_keys=e.keys() tmp_e=flatenDictList(e) hid_e=set(ee.keys())-set(tmp_e.keys()) M=len(hid_e) # number of the hidden edges print "start inferring" scores1=netAlignInfer(maxSim,e,nwSims) scores2=netAlignInfer(maxSim,e,nwSimsL) scores3=netAlignInfer(maxSim,e,dmSimsL)