if __name__ == "__main__": # We can use this to run this file as a script and test the Preprocessor if len( argv ) == 1: # Use the default input and output directories if no arguments are provided input_dir = "../public_data" output_dir = "../results" else: input_dir = argv[1] output_dir = argv[2] basename = 'Iris' D = DataManager(basename, input_dir) # Load data print("*** Original data ***") print(D) Prepro = Preprocessor() # Preprocess on the data and load it back into D D.data['X_train'] = Prepro.fit_transform(D.data['X_train'], D.data['Y_train']) D.data['X_valid'] = Prepro.transform(D.data['X_valid']) D.data['X_test'] = Prepro.transform(D.data['X_test']) D.feat_name = np.array(['PC1', 'PC2']) D.feat_type = np.array(['Numeric', 'Numeric']) # Here show something that proves that the preprocessing worked fine print("*** Transformed data ***") print(D)
if __name__ == "__main__": # We can use this to run this file as a script and test the Preprocessor if len( argv ) == 1: # Use the default input and output directories if no arguments are provided input_dir = "../iris" output_dir = "../results" else: input_dir = argv[1] output_dir = argv[2] basename = 'iris' D = DataManager(basename, input_dir) # Load data print("*** Original data ***") print(D) Prepro = Preprocessor() # Preprocess on the data and load it back into D D.data['X_train'] = Prepro.fit_transform(D.data['X_train'], D.data['Y_train']) D.data['X_valid'] = Prepro.transform(D.data['X_valid']) D.data['X_test'] = Prepro.transform(D.data['X_test']) D.feat_name = np.array(['Feat1', 'Feat2']) D.feat_type = np.array(['Numeric', 'Numeric']) # Here show something that proves that the preprocessing worked fine print("*** Transformed data ***") print(D)