Example #1
0
    def __init__(self, encoder=Spectral, **kwargs):

        # update the class attributes and should contain
        # the attributes of needed by the encoder
        if kwargs:
            self.feat_param.update(
                kwargs)  # the parameters used by the encoder
        self.__dict__.update(self.feat_param)

        if self.normalize == 'mvn':
            self.normalizer = StandardScaler()
        elif self.normalize == 'zca':
            self.normalizer = ZCA()
        elif self.normalize == 'minmax':
            self.normalizer = MinMaxScaler()
        else:
            self.normalizer = IdentityTransform()

        # self.feat_param should have the right attributes
        # that will be used to create the encoder arguments
        encoder_attr_ = []
        for var_name, var_value in self.feat_param.items():
            if var_name in self.encoder_vars:
                if isinstance(var_value, str):
                    encoder_attr_.append("{0}='{1}'".format(
                        var_name, var_value))
                else:
                    encoder_attr_.append("{0}={1}".format(var_name, var_value))

        # dynamically build and run the encoder with its defined attributes
        _encoder_args = ', '.join([str(w) for w in encoder_attr_])
        _encoder_comm = "self.encoder = encoder({})".format(_encoder_args)

        exec(_encoder_comm)

        if not hasattr(self, 'feat_cache'):
            setattr(self, 'feat_cache', {})

        if not hasattr(self, 'noise_cache'):
            setattr(self, 'noise_cache', {})

        if not hasattr(self, 'wav_cache'):
            setattr(self, 'wav_cache', {})

        self.D = self.encoder.n_features * self.stacksize
Example #2
0
    def __load_data(self, img_preprocessing: str = None):
        (x_train, y_train), (x_val_test,
                             y_val_test) = fashion_mnist.load_data()

        x_train = x_train.astype('float32') / 255.0
        x_val_test = x_val_test.astype('float32') / 255.0

        if img_preprocessing == "std_normal":
            x_train_flat = x_train.reshape(-1, 28 * 28)
            x_val_test_flat = x_val_test.reshape(-1, 28 * 28)

            std = StandardScaler().fit(x_train_flat)
            x_train = std.transform(x_train_flat).reshape(-1, 28, 28)
            x_val_test = std.transform(x_val_test_flat).reshape(-1, 28, 28)

        elif img_preprocessing == "eq_hist":
            x_train = exposure.equalize_hist(x_train)
            x_val_test = exposure.equalize_hist(x_val_test)

        elif img_preprocessing == "zca_whiting":
            x_train_flat = x_train.reshape(-1, 28 * 28)
            x_val_test_flat = x_val_test.reshape(-1, 28 * 28)
            zca = ZCA().fit(x_train_flat)
            x_train = zca.transform(x_train_flat).reshape(-1, 28, 28)
            x_val_test = zca.transform(x_val_test_flat).reshape(-1, 28, 28)

        x_train = x_train.reshape(-1, 28, 28, 1)
        x_val_test = x_val_test.reshape(-1, 28, 28, 1)

        x_test, x_val, y_test, y_val = train_test_split(x_val_test,
                                                        y_val_test,
                                                        train_size=0.5,
                                                        random_state=42)
        y_train = utils.to_categorical(y_train, 10)
        y_val = utils.to_categorical(y_val, 10)
        y_test = utils.to_categorical(y_test, 10)

        return x_train, y_train, x_val, y_val, x_test, y_test
def sample_data(frames_per_packet, batch_size, start_frame_for_period=None, batch_step=1):

    import progressbar

    r = []
    X_brain_buffer = np.memmap(join(save_data_folder, 'X_brain_buffer_whitened.npy'), dtype=np.float32, mode='w+',
                         shape=(batch_size, frames_per_packet, full_matrix.shape[1]))
    X_images_buffer = np.memmap(join(save_data_folder, 'X_images_buffer.npy'), dtype=np.float32, mode='w+',
                         shape=(batch_size, 112 // 2, 150 // 2, 3))
    Y_buffer = np.memmap(join(save_data_folder, 'Y_buffer.npy'), dtype=np.float32, mode='w+',
                         shape=(batch_size, 112 // 2, 150 // 2))

    total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    bar = progressbar.bar.ProgressBar(max_value=batch_size)
    samples_without_SVD_convergance = 0
    for i in range(batch_size):

        if start_frame_for_period == None:
            r_int = np.random.randint(total - frames_per_packet )
        else:
            r_int = start_frame_for_period + i * batch_step
        r.append(r_int)

        X = np.empty((frames_per_packet, full_matrix.shape[1]))

        for j in range(frames_per_packet):

            x = full_matrix[r_int + j]
            X[j, :] = np.array(x, dtype=np.float32, copy=False)

            if j == 0:
                cap.set(1, r_int)
                ret, frame = cap.read()
                # Binarize the input frame
                binarized_frame = binarize_frame(frame)
                binarized_frame = cv2.resize(binarized_frame, (150 // 2, 112 // 2), interpolation=cv2.INTER_AREA)
                X_images_buffer[i, :, :, :] = np.array(binarized_frame, dtype=np.float32, copy=False)
            elif j == frames_per_packet-1:
                cap.set(1, r_int + frames_per_packet)
                ret, frame = cap.read()
                y = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                y = cv2.resize(y, (150 // 2, 112 // 2), interpolation=cv2.INTER_AREA)
                Y_buffer[i, :, :] = np.array(y/255, dtype=np.float32, copy=False)

        # Whiten brain data
        X = X.T
        try:
            zca_transform = ZCA().fit(X)
            X_Whitened = zca_transform.transform(X)
            X_brain_buffer[i] = X_Whitened.T
        except: # If SVD does not converge add the previous sample again
            X_brain_buffer[i] = X_brain_buffer[i-1]
            X_images_buffer[i] = X_images_buffer[i-1]
            Y_buffer[i] = Y_buffer[i-1]
            samples_without_SVD_convergance = samples_without_SVD_convergance + 1
            print(samples_without_SVD_convergance)

        bar.update(i)

    r = np.array(r, dtype=np.float32, copy=False)

    np.savez(join(save_data_folder, 'binary_headers.npz'), dtype=[np.float32],
             shape_X_brain=[batch_size, frames_per_packet, full_matrix.shape[1]],
             shape_X_images=[batch_size, 112 // 2, 150 // 2, 3],
             shape_Y=[batch_size, 112 // 2, 150 // 2],
             r=r)

    print('/nStart frame = {}, End frame = {}'.format(r[0], r[-1]))
Example #4
0
    def __init__(self,
                 stacksize=40,
                 normalize='mvn',
                 n_noise_fr=0,
                 fs=16000,
                 window_length=0.050,
                 window_shift=0.010,
                 nfft=1024,
                 scale='mel',
                 lowerf=120,
                 upperf=7000,
                 nfilt=40,
                 taper_filt=True,
                 compression='log',
                 dct=False,
                 nceps=13,
                 log_e=True,
                 lifter=22,
                 deltas=False,
                 remove_dc=False,
                 medfilt_t=0,
                 medfilt_s=(0, 0),
                 noise_fr=0,
                 pre_emph=0.97,
                 feat_cache=None,
                 noise_cache=None,
                 wav_cache=None,
                 n_jobs=1,
                 verbose=False):
        self.stacksize = stacksize
        self.normalize = normalize
        if self.normalize == 'mvn':
            self.normalizer = StandardScaler()
        elif self.normalize == 'zca':
            self.normalizer = ZCA()
        elif self.normalize == 'minmax':
            self.normalizer = MinMaxScaler()
        else:
            self.normalizer = IdentityTransform()
        self.n_noise_fr = n_noise_fr
        self.fs = fs
        self.window_length = window_length
        self.window_shift = window_shift
        self.nfft = nfft
        self.scale = scale
        self.lowerf = lowerf
        self.upperf = upperf
        self.nfilt = nfilt
        self.taper_filt = taper_filt
        self.compression = compression
        self.dct = dct
        self.nceps = nceps
        self.log_e = log_e
        self.lifter = lifter
        self.deltas = deltas
        self.remove_dc = remove_dc
        self.medfilt_t = medfilt_t
        self.medfilt_s = medfilt_s
        self.noise_fr = noise_fr
        self.pre_emph = pre_emph

        self.n_jobs = n_jobs
        self.verbose = verbose

        self.encoder = Spectral(fs=fs,
                                window_length=window_length,
                                window_shift=window_shift,
                                nfft=nfft,
                                scale=scale,
                                lowerf=lowerf,
                                upperf=upperf,
                                nfilt=nfilt,
                                taper_filt=taper_filt,
                                compression=compression,
                                dct=dct,
                                nceps=nceps,
                                log_e=log_e,
                                lifter=lifter,
                                deltas=deltas,
                                remove_dc=remove_dc,
                                medfilt_t=medfilt_t,
                                medfilt_s=medfilt_s,
                                noise_fr=noise_fr,
                                pre_emph=pre_emph)
        self.D = self.encoder.n_features * self.stacksize
        self.wav_cache = wav_cache if wav_cache else {}
        self.noise_cache = noise_cache if noise_cache else {}
        self.feat_cache = feat_cache if feat_cache else {}
# DISCRIMINATOR
discriminator1 = DConvNet1(channel_in=IN_CHANNELS, num_classes=NUM_CLASSES)
discriminator2 = DConvNet2(n_z=N_Z,
                           channel_in=IN_CHANNELS,
                           num_classes=NUM_CLASSES)

# put on GPU
if CUDA:
    generator.cuda()
    inference.cuda()
    classifier.cuda()
    discriminator1.cuda()
    discriminator2.cuda()

# ZCA
whitener = ZCA(x=x_unlabelled)

# LOSS FUNCTIONS
if CUDA:
    losses = {
        'bce': nn.BCELoss().cuda(),
        'mse': nn.MSELoss().cuda(),
        'ce': nn.CrossEntropyLoss().cuda()
    }
else:
    losses = {
        'bce': nn.BCELoss(),
        'mse': nn.MSELoss(),
        'ce': nn.CrossEntropyLoss()
    }
Example #6
0
def load_data():
    import cv2
    from zca import ZCA
    zca = ZCA()

    # load dataset
    dataset = np.load('dataset/{}.npy'.format(dataset_name)).item()
    data = dataset['data']
    data_map = dataset['label']
    global nch, ncls
    nch = data.shape[2]
    ncls = len(np.unique(data_map)) - 1

    # partition the training and test data
    train_coord = np.empty(
        (0, 2)).astype(np.int8)  # coordinates of the training data
    test_coord = np.empty(
        (0, 2)).astype(np.int8)  # coordinates of the test data
    for cls in range(ncls):
        coord_class = np.transpose(np.nonzero(data_map == cls + 1))
        rng.shuffle(coord_class)
        # count = int(np.round(len(coord_class) * percent))
        samples_per_class = count
        train_coord = np.concatenate(
            (train_coord, coord_class[:samples_per_class]))
        test_coord = np.concatenate(
            (test_coord, coord_class[samples_per_class:]))
    rng.shuffle(train_coord)
    rng.shuffle(test_coord)
    print(train_coord.shape, test_coord.shape)
    train_map = np.zeros_like(data_map)
    test_map = np.zeros_like(data_map)
    for i in range(train_coord.shape[0]):
        train_map[train_coord[i, 0],
                  train_coord[i, 1]] = data_map[train_coord[i, 0],
                                                train_coord[i, 1]]
    for i in range(test_coord.shape[0]):
        test_map[test_coord[i, 0],
                 test_coord[i, 1]] = data_map[test_coord[i, 0], test_coord[i,
                                                                           1]]

    # data preprocessin
    data = (
        (data - np.min(data[train_map != 0])) /
        np.max(data[train_map != 0] - np.min(data[train_map != 0])) - 0.5) * 2
    zca.fit(data[train_map != 0])
    data = zca.transform(data.reshape(-1,
                                      nch)).reshape(data.shape[0],
                                                    data.shape[1],
                                                    data.shape[2])

    # padding the HSI scene and the label map
    data = cv2.copyMakeBorder(data, patch_size // 2, patch_size // 2,
                              patch_size // 2, patch_size // 2,
                              cv2.BORDER_REPLICATE)
    train_map = cv2.copyMakeBorder(train_map, patch_size // 2, patch_size // 2,
                                   patch_size // 2, patch_size // 2,
                                   cv2.BORDER_REPLICATE)
    test_map = cv2.copyMakeBorder(test_map, patch_size // 2, patch_size // 2,
                                  patch_size // 2, patch_size // 2,
                                  cv2.BORDER_REPLICATE)

    train_coord += patch_size // 2
    test_coord += patch_size // 2
    return data, train_map, train_coord, test_map, test_coord
Example #7
0
 def fit(self, X=None, y=None):
     if self.patch_file is None:
         num = self.patch_num // X.size
         data = []
         for item in X:
             img = imread(str(item[0]))
             img = img_as_ubyte(rgb2gray(img))
             #img = self.binary(img) # 二值化
             tmp = extract_patches_2d(img, self.patch_size, max_patches = num,\
                                     random_state=np.random.RandomState())
             data.append(tmp)
         
         data = np.vstack(data)
         data = data.reshape(data.shape[0], -1)
         data = np.asarray(data, 'float32')
     else:
         data = np.load(self.patch_file,'r+') # load npy file, 注意模式,因为后面需要修改
     
     data = np.require(data, dtype=np.float32)
     
     # Standardization
     #logging.info("Pre-processing : Standardization...")
     #self.standard = StandardScaler()
     #data = self.standard.fit_transform(data)
         
     # whiten
     #logging.info("Pre-processing : PCA Whiten...")
     #self.pca = RandomizedPCA(copy=True, whiten=True)
     #data = self.pca.fit_transform(data)
     
     # whiten
     logging.info("Pre-processing : ZCA Whiten...")
     self.zca = ZCA()
     data = self.zca.fit_transform(data)
     
     # 0-1 scaling 都可以用preprocessing模块实现
     #self.minmax = MinMaxScaler()
     #data = self.minmax.fit_transform(data)
     
     """k-means
     self.kmeans = MiniBatchKMeans(n_clusters=self.n_components, init='k-means++', \
                                 max_iter=self.n_iter, batch_size=self.batch_size, verbose=1,\
                                 tol=0.0, max_no_improvement=100,\
                                 init_size=None, n_init=3, random_state=np.random.RandomState(0),\
                                 reassignment_ratio=0.0001)
     logging.info("Sparse coding : Phase 1 - Codebook learning (K-means).")
     self.kmeans.fit(data)
     
     logging.info("Sparse coding : Phase 2 - Define coding method (omp,lars...).")
     self.coder = SparseCoder(dictionary=self.kmeans.cluster_centers_, 
                              transform_n_nonzero_coefs=256,
                              transform_alpha=None, 
                              transform_algorithm='lasso_lars',
                              n_jobs = 1)
     """
     #'''genertic
     logging.info("Sparse coding...")
     self.coder = MiniBatchDictionaryLearning(n_components=self.n_components, \
                                        alpha=self.alpha, n_iter=self.n_iter, \
                                        batch_size =self.batch_size, verbose=True)
     self.coder.fit(data)
     self.coder.transform_algorithm = 'omp'
     self.coder.transform_alpha = 0.1 # omp情况下,代表重建的误差
     #'''
     return self