def test_no_model_error(self, df_c): gtf = GTransportFormula(df_c, exposure='A', outcome='Y', selection='S', generalize=True) with pytest.raises(ValueError): gtf.fit()
def test_transport_conf(self, df_c): gtf = GTransportFormula(df_c, exposure='A', outcome='Y', selection='S', generalize=False) gtf.outcome_model('A + L + L:A + W_sq + W_sq:A + W_sq:A:L', print_results=False) gtf.fit() npt.assert_allclose(gtf.risk_difference, 0.042574, atol=1e-5) npt.assert_allclose(gtf.risk_ratio, 1.124257, atol=1e-4)
def test_generalize(self, df_r): gtf = GTransportFormula(df_r, exposure='A', outcome='Y', selection='S', generalize=True) gtf.outcome_model('A + L + L:A + W_sq + W_sq:A + W_sq:A:L', print_results=False) gtf.fit() npt.assert_allclose(gtf.risk_difference, 0.064038, atol=1e-5) npt.assert_allclose(gtf.risk_ratio, 1.203057, atol=1e-4)
def test_generalize_weight(self, df_c): gtf = GTransportFormula(df_c, exposure='A', outcome='Y', selection='S', generalize=True, weights='weight') gtf.outcome_model('A + L + L:A + W_sq + W_sq:A + W_sq:A:L', print_results=False) gtf.fit() npt.assert_allclose(gtf.risk_difference, 0.048949, atol=1e-5) npt.assert_allclose(gtf.risk_ratio, 1.149556, atol=1e-4)