Example #1
0
    def call(self, inputs):
        """Forward compute.

        :param inputs: input feature map
        :return: tuple of feature map
        """
        # assert len(inputs) == len(self.in_channels)
        laterals = [
            lateral_conv(inputs[i + self.start_level])
            for i, lateral_conv in enumerate(self.lateral_convs)
        ]
        used_backbone_levels = len(laterals)
        for i in range(used_backbone_levels - 1, 0, -1):
            try:
                laterals[i - 1] += ops.InterpolateScale(scale_factor=2,
                                                        mode='nearest')(
                                                            laterals[i])
            except Exception:
                laterals[i - 1] += ops.InterpolateScale(
                    size=laterals[i - 1].size()[2:],
                    mode='nearest')(laterals[i])
        outs = [
            self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels)
        ]
        if self.num_outs > len(outs):
            for i in range(self.num_outs - used_backbone_levels):
                outs.append(ops.MaxPool2d(1, stride=2)(outs[-1]))
        return {idx: out for idx, out in enumerate(outs)}
Example #2
0
    def call(self, inputs):
        """Forward compute.

        :param inputs: input feature map
        :return: tuple of feature map
        """
        # assert len(inputs) == len(self.in_channels)
        laterals = [
            lateral_conv(inputs[i + self.start_level])
            for i, lateral_conv in enumerate(self.lateral_convs)
        ]
        used_backbone_levels = len(laterals)
        for i in range(used_backbone_levels - 1, 0, -1):
            laterals[i - 1] += ops.InterpolateScale(scale_factor=2,
                                                    mode='nearest')(
                                                        laterals[i])
        outs = [
            self.fpn_convs[i](laterals[i]) for i in range(used_backbone_levels)
        ]
        if self.num_outs > len(outs):
            if not self.add_extra_convs:
                for i in range(self.num_outs - used_backbone_levels):
                    outs.append(ops.MaxPool2d(1, stride=2)(outs[-1]))
            else:
                if self.extra_convs_on_inputs:
                    orig = inputs[self.backbone_end_level - 1]
                    outs.append(self.fpn_convs[used_backbone_levels](orig))
                else:
                    outs.append(self.fpn_convs[used_backbone_levels](outs[-1]))
                for i in range(used_backbone_levels + 1, self.num_outs):
                    if self.relu_before_extra_convs:
                        outs.append(self.fpn_convs[i](ops.Relu()(outs[-1])))
                    else:
                        outs.append(self.fpn_convs[i](outs[-1]))
        return tuple(outs)
Example #3
0
    def __init__(self, in_channel, out_channel, upscale, rgb_mean, blocks,
                 candidates, cib_range, method, code, block_range):
        """Construct the MtMSR class.

        :param net_desc: config of the searched structure
        """
        super(MtMSR, self).__init__()
        logging.info("start init MTMSR")
        current_channel = in_channel
        layers = list()
        for i, block_name in enumerate(blocks):
            if isinstance(block_name, list):
                layers.append(ChannelIncreaseBlock(block_name,
                                                   current_channel))
                current_channel *= len(block_name)
            else:
                if block_name == "res2":
                    layers.append(
                        ResidualBlock(kernel_size=2,
                                      base_channel=current_channel))
                elif block_name == "res3":
                    layers.append(
                        ResidualBlock(kernel_size=3,
                                      base_channel=current_channel))
        layers.extend([
            conv(current_channel, out_channel * upscale**2),
            ops.PixelShuffle(upscale)
        ])
        initialize_weights(layers[-2], 0.1)
        self.sub_mean = ops.MeanShift(1.0, rgb_mean)
        body = Sequential(*layers)
        upsample = ops.InterpolateScale(scale_factor=upscale)
        self.add = Add(body, upsample)
        self.head = ops.MeanShift(1.0, rgb_mean, sign=1)
Example #4
0
 def call(self, x, **kwargs):
     """Forward compute of resnet for detection."""
     x = self.conv1(x)
     x = self.norm1(x)
     x = self.relu(x)
     x = self.maxpool(x)
     if self.parallel_code is None:
         outs = self.res_layers_seq(x)
     else:
         outs = []
         subset_lists = [0 for i in range(self.subset_limit)]
         parallel_numbers = self.parallel_code.split('-')
         for l, layer in enumerate(self.res_layers):
             size = x.size()[2:]
             x = layer(x)
             x_l_k = x
             for k in range(int(parallel_numbers[l])):
                 x_l_k = ops.Conv2d(self.channels[l + 1],
                                    self.channels[l],
                                    kernel_size=1).cuda()(x_l_k)
                 x_l_k = ops.InterpolateScale(size=size,
                                              mode='nearest')(x_l_k)
                 x_l_k = layer(subset_lists[k] + x_l_k)
                 subset_lists[k] = x_l_k
                 size = x_l_k.size()[2:]
             outs.append(x_l_k)
     return tuple(outs)
Example #5
0
    def call(self, inputs):
        """Forward compute.

        :param inputs: input feature map
        :return: tuple of feature map
        """
        laterals = [
            conv(inputs[i]) for i, conv in enumerate(self.lateral_convs)
        ]
        num_stage = len(laterals)
        for i in range(num_stage - 1, 0, -1):
            laterals[i - 1] += ops.InterpolateScale(
                size=laterals[i - 1].size()[2:], mode='nearest')(laterals[i])
        outs = [self.fpn_convs[i](laterals[i]) for i in range(num_stage)]
        outs.append(ops.MaxPool2d(1, stride=2)(outs[-1]))
        return {idx: out for idx, out in enumerate(outs)}