def adam2(params, cost_or_grads, alpha=3e-4, hps=None, epsilon=1e-8): updates = [] if type(cost_or_grads) is not list: gs = tf.gradients(cost_or_grads, params) else: gs = cost_or_grads beta2 = 1-1./(hps.train_its*hps.polyak_epochs) # all-reduce grads1 = [Z.allreduce_mean(g) for g in gs] grads2 = [Z.allreduce_mean(g**2) for g in gs] t = tf.Variable(1., 'adam_t') alpha_t = alpha * tf.sqrt((1. - tf.pow(beta2, t))) / (1. - tf.pow(hps.beta1, t)) updates.append(t.assign_add(1)) for w, g1, g2 in zip(params, grads1, grads2): mom2 = tf.Variable(tf.zeros(w.get_shape()), w.name + '_adam_m2') if hps.beta1 > 0: mom1 = tf.Variable(tf.zeros(w.get_shape()), w.name + '_adam_m1') mom1_new = hps.beta1 * mom1 + (1. - hps.beta1) * g1 updates.append(mom1.assign(mom1_new)) else: mom1_new = g1 m2_new = beta2 * mom2 + (1. - beta2) * g2 delta_t = mom1_new / (tf.sqrt(m2_new) + epsilon) w_new = hps.weight_decay * w - alpha_t * delta_t updates.append(mom2.assign(m2_new)) updates.append(w.assign(w_new)) # Polyak averaging polyak_avg_op, polyak_swap_op, ema = polyak(params, beta2) train_op = tf.group(polyak_avg_op, *updates) return train_op, polyak_swap_op, ema
def adam2_old(params, cost_or_grads, lr=3e-4, mom1=0.9, mom2=0.999, epsilon=1e-8): updates = [] if type(cost_or_grads) is not list: gs = tf.gradients(cost_or_grads, params) else: gs = cost_or_grads # all-reduce grads1 = [Z.allreduce_mean(g) for g in gs] grads2 = [Z.allreduce_mean(tf.square(g)) for g in gs] mom2 = tf.maximum(0., 1. - (hvd.size() * (1 - mom2))) t = tf.Variable(1., 'adam_t') lr_t = lr * tf.sqrt((1. - tf.pow(mom2, t))) / (1. - tf.pow(mom1, t)) updates.append(t.assign_add(1)) for p, g1, g2 in zip(params, grads1, grads2): mg = tf.Variable(tf.zeros(p.get_shape()), p.name + '_adam_mg') if mom1 > 0: v = tf.Variable(tf.zeros(p.get_shape()), p.name + '_adam_v') v_t = mom1 * v + (1. - mom1) * g1 updates.append(v.assign(v_t)) else: v_t = g1 mg_t = mom2 * mg + (1. - mom2) * g2 delta_t = v_t / (tf.sqrt(mg_t) + epsilon) p_t = p - lr_t * delta_t updates.append(mg.assign(mg_t)) updates.append(p.assign(p_t)) return tf.group(*updates)