def find_table(img, display_list): ## find white border DoB = zc.get_DoB(img, 1, 31, method='Average') zc.check_and_display('DoB', DoB, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) mask_white = zc.color_inrange(DoB, 'HSV', V_L=10) zc.check_and_display_mask('mask_white_raw', img, mask_white, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) ## find purple table (roughly) #mask_table = zc.color_inrange(img, 'HSV', H_L = 130, H_U = 160, S_L = 50, V_L = 50, V_U = 220) mask_ground = zc.color_inrange(img, 'HSV', H_L=18, H_U=30, S_L=75, S_U=150, V_L=100, V_U=255) zc.check_and_display_mask('ground', img, mask_ground, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) # red car mask_red = zc.color_inrange(img, 'HSV', H_L=170, H_U=10, S_L=150) mask_ground = np.bitwise_or(mask_ground, mask_red) # ceiling mask_ceiling = np.zeros((360, 640), dtype=np.uint8) mask_ceiling[:40, :] = 255 mask_ground = np.bitwise_or(mask_ground, mask_ceiling) # find the screen mask_screen1 = zc.color_inrange(img, 'HSV', H_L=15, H_U=45, S_L=30, S_U=150, V_L=40, V_U=150) mask_screen2 = ((img[:, :, 2] - 5) > img[:, :, 0]).astype(np.uint8) * 255 mask_screen = np.bitwise_or(mask_screen1, mask_screen2) mask_screen = np.bitwise_and(np.bitwise_not(mask_ground), mask_screen) mask_screen = zc.shrink(mask_screen, 5, iterations=3) zc.check_and_display_mask('screen_raw', img, mask_screen, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) bool_screen = zc.mask2bool([mask_screen])[0] c_pixels = img[bool_screen].astype(np.int8) d_pixels = c_pixels[:, 2] - c_pixels[:, 0] rb_diff = np.median(d_pixels) print rb_diff if rb_diff > 20: print "Case 1" mask_table1 = zc.color_inrange(img, 'HSV', H_L=0, H_U=115, S_U=45, V_L=35, V_U=120) mask_table2 = zc.color_inrange(img, 'HSV', H_L=72, H_U=120, S_L=20, S_U=60, V_L=35, V_U=150) mask_table = np.bitwise_or(mask_table1, mask_table2) mask_screen = zc.color_inrange(img, 'HSV', H_L=15, H_U=45, S_L=60, S_U=150, V_L=40, V_U=150) elif rb_diff > 15: print "Case 2" mask_table1 = zc.color_inrange(img, 'HSV', H_L=0, H_U=115, S_U=45, V_L=35, V_U=120) mask_table2 = zc.color_inrange(img, 'HSV', H_L=72, H_U=120, S_L=20, S_U=60, V_L=35, V_U=150) mask_table = np.bitwise_or(mask_table1, mask_table2) mask_screen = zc.color_inrange(img, 'HSV', H_L=15, H_U=45, S_L=35, S_U=150, V_L=40, V_U=150) else: print "Case 3" mask_table1 = zc.color_inrange(img, 'HSV', H_L=0, H_U=115, S_U=20, V_L=35, V_U=115) mask_table2 = zc.color_inrange(img, 'HSV', H_L=72, H_U=120, S_L=20, S_U=60, V_L=35, V_U=150) mask_table = np.bitwise_or(mask_table1, mask_table2) mask_screen1 = zc.color_inrange(img, 'HSV', H_L=15, H_U=45, S_L=30, S_U=150, V_L=40, V_U=150) mask_screen2 = ( (img[:, :, 2] - 1) > img[:, :, 0]).astype(np.uint8) * 255 mask_screen = np.bitwise_or(mask_screen1, mask_screen2) mask_screen = np.bitwise_and(np.bitwise_not(mask_ground), mask_screen) zc.check_and_display_mask('screen', img, mask_screen, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) mask_table = np.bitwise_and(np.bitwise_not(mask_screen), mask_table) mask_table = np.bitwise_and(np.bitwise_not(zc.shrink(mask_ground, 3)), mask_table) mask_table, _ = zc.get_big_blobs(mask_table, min_area=50) mask_table = cv2.morphologyEx(mask_table, cv2.MORPH_CLOSE, zc.generate_kernel(7, 'circular'), iterations=1) #mask_table, _ = zc.find_largest_CC(mask_table) zc.check_and_display_mask('table_purple_raw', img, mask_table, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) if mask_table is None: rtn_msg = {'status': 'fail', 'message': 'Cannot find table'} return (rtn_msg, None) #mask_table_convex, _ = zc.make_convex(mask_table.copy(), app_ratio = 0.005) #mask_table = np.bitwise_or(mask_table, mask_table_convex) mask_table_raw = mask_table.copy() zc.check_and_display_mask('table_purple', img, mask_table, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) mask_table_convex, _ = zc.make_convex(zc.shrink(mask_table, 5, iterations=5), app_ratio=0.01) mask_table_shrunk = zc.shrink(mask_table_convex, 5, iterations=3) zc.check_and_display_mask('table_shrunk', img, mask_table_shrunk, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) ## fine tune the purple table based on white border mask_white = np.bitwise_and(np.bitwise_not(mask_table_shrunk), mask_white) if 'mask_white' in display_list: gray = np.float32(mask_white) dst = cv2.cornerHarris(gray, 10, 3, 0.04) dst = cv2.dilate(dst, None) img_white = img.copy() img_white[mask_white > 0, :] = [0, 255, 0] img_white[dst > 2.4e7] = [0, 0, 255] zc.check_and_display('mask_white', img_white, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) #mask_table, _ = zc.make_convex(mask_table, app_ratio = 0.005) for i in xrange(15): mask_table = zc.expand(mask_table, 3) mask_table = np.bitwise_and(np.bitwise_not(mask_white), mask_table) mask_table, _ = zc.find_largest_CC(mask_table) if mask_table is None: rtn_msg = { 'status': 'fail', 'message': 'Cannot find table, case 2' } return (rtn_msg, None) if i % 4 == 3: mask_table, _ = zc.make_convex(mask_table, app_ratio=0.01) #img_display = img.copy() #img_display[mask_table > 0, :] = [0, 0, 255] #zc.display_image('table%d-b' % i, img_display, resize_max = config.DISPLAY_MAX_PIXEL, wait_time = config.DISPLAY_WAIT_TIME) #mask_white = np.bitwise_and(np.bitwise_not(mask_table), mask_white) mask_table = np.bitwise_and(np.bitwise_not(mask_white), mask_table) mask_table, _ = zc.find_largest_CC(mask_table) mask_table, hull_table = zc.make_convex(mask_table, app_ratio=0.01) zc.check_and_display_mask('table_purple_fixed', img, mask_table, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) ## check if table is big enough table_area = cv2.contourArea(hull_table) table_area_percentage = float(table_area) / img.shape[0] / img.shape[1] if table_area_percentage < 0.06: rtn_msg = { 'status': 'fail', 'message': "Detected table too small: %f" % table_area_percentage } return (rtn_msg, None) ## find top line of table hull_table = np.array(zc.sort_pts(hull_table[:, 0, :], order_first='y')) ul = hull_table[0] ur = hull_table[1] if ul[0] > ur[0]: t = ul ul = ur ur = t i = 2 # the top two points in the hull are probably on the top line, but may not be the corners while i < hull_table.shape[0] and hull_table[i, 1] - hull_table[0, 1] < 80: pt_tmp = hull_table[i] if pt_tmp[0] < ul[0] or pt_tmp[0] > ur[0]: # computing the area of the part of triangle that lies inside the table triangle = np.vstack([pt_tmp, ul, ur]).astype(np.int32) mask_triangle = np.zeros_like(mask_table) cv2.drawContours(mask_triangle, [triangle], 0, 255, -1) pts = mask_table_raw[mask_triangle.astype(bool)] if np.sum(pts == 255) > 10: break if pt_tmp[0] < ul[0]: ul = pt_tmp else: ur = pt_tmp i += 1 else: break ul = [int(x) for x in ul] ur = [int(x) for x in ur] if 'table' in display_list: img_table = img.copy() img_table[mask_table.astype(bool), :] = [255, 0, 255] #cv2.line(img_table, tuple(ul), tuple(ur), [0, 255, 0], 3) zc.check_and_display('table', img_table, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) ## sanity checks about table top line detection if zc.euc_dist(ul, ur)**2 * 3.1 < table_area: rtn_msg = { 'status': 'fail', 'message': "Table top line too short: %f, %f" % (zc.euc_dist(ul, ur)**2 * 3.1, table_area) } return (rtn_msg, None) if abs(zc.line_angle(ul, ur)) > 0.4: rtn_msg = { 'status': 'fail', 'message': "Table top line tilted too much" } return (rtn_msg, None) # check if two table sides form a reasonable angle mask_table_bottom = mask_table.copy() mask_table_bottom[:-30] = 0 p_left_most = zc.get_edge_point(mask_table_bottom, (-1, 0)) p_right_most = zc.get_edge_point(mask_table_bottom, (1, 0)) if p_left_most is None or p_right_most is None: rtn_msg = { 'status': 'fail', 'message': "Table doesn't occupy bottom part of image" } return (rtn_msg, None) left_side_angle = zc.line_angle(ul, p_left_most) right_side_angle = zc.line_angle(ur, p_right_most) angle_diff = zc.angle_dist(left_side_angle, right_side_angle, angle_range=math.pi * 2) if abs(angle_diff) > 2.0: rtn_msg = { 'status': 'fail', 'message': "Angle between two side edge not right: %f" % angle_diff } return (rtn_msg, None) if 'table' in display_list: img_table = img.copy() img_table[mask_table.astype(bool), :] = [255, 0, 255] cv2.line(img_table, tuple(ul), tuple(ur), [0, 255, 0], 3) zc.check_and_display('table', img_table, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) ## rotate to make opponent upright, use table edge as reference pts1 = np.float32( [ul, ur, [ul[0] + (ur[1] - ul[1]), ul[1] - (ur[0] - ul[0])]]) pts2 = np.float32([[0, config.O_IMG_HEIGHT], [config.O_IMG_WIDTH, config.O_IMG_HEIGHT], [0, 0]]) M = cv2.getAffineTransform(pts1, pts2) img[np.bitwise_not(zc.get_mask(img, rtn_type="bool", th=3)), :] = [3, 3, 3] img_rotated = cv2.warpAffine(img, M, (config.O_IMG_WIDTH, config.O_IMG_HEIGHT)) ## sanity checks about rotated opponent image bool_img_rotated_valid = zc.get_mask(img_rotated, rtn_type="bool") if float(bool_img_rotated_valid.sum() ) / config.O_IMG_WIDTH / config.O_IMG_HEIGHT < 0.6: rtn_msg = { 'status': 'fail', 'message': "Valid area too small after rotation: %f" % (float(bool_img_rotated_valid.sum()) / config.O_IMG_WIDTH / config.O_IMG_HEIGHT) } return (rtn_msg, None) rtn_msg = {'status': 'success'} return (rtn_msg, (img_rotated, mask_table, M))
def _detect_table(img, display_list): SE1 = int(float(img.shape[1]) / 640 * 5 + 0.5) DOB_PARA = int(float(img.shape[1]) / 640 * 51 + 0.5) ## detect blue/purple table hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) mask_blue = zc.color_inrange(img, 'HSV', hsv=hsv, H_L=88, H_U=125, S_L=120, V_L=100) mask_blue = zc.expand(mask_blue, SE1) mask_table, _ = zc.find_largest_CC(mask_blue) if mask_table is None: rtn_msg = {'status': 'fail', 'message': 'Cannot find table'} return (rtn_msg, None) mask_blue = zc.shrink(mask_blue, SE1) # revise table detection based on how blue the current table is table_hsv_ave = np.mean(hsv[mask_blue.astype(bool)], axis=0) mask_blue = zc.color_inrange(img, 'HSV', hsv=hsv, H_L=table_hsv_ave[0] - 15, H_U=table_hsv_ave[0] + 15, S_L=min(120, table_hsv_ave[1] - 30), V_L=min(80, table_hsv_ave[2] - 50)) #mask_blue = cv2.morphologyEx(mask_blue, cv2.MORPH_OPEN, zc.generate_kernel(3, 'square'), iterations = 2) mask_table, _ = zc.find_largest_CC(mask_blue) if mask_table is None: rtn_msg = {'status': 'fail', 'message': 'Cannot find table'} return (rtn_msg, None) mask_table_fat, _ = zc.find_largest_CC( zc.expand(mask_blue, SE1, iterations=2)) mask_table_fat = zc.shrink(mask_table_fat, SE1, iterations=2) zc.check_and_display_mask("blue", img, mask_blue, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) zc.check_and_display_mask("table", img, mask_table, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) ## detect the part that is bluer than neighbors, which is likely table edge blue_dist = zc.color_dist(img, 'HSV', HSV_ref=table_hsv_ave, useV=False) blue_DoB = zc.get_DoB(blue_dist, DOB_PARA, 1, method='Average') mask_bluer = zc.color_inrange(blue_DoB, 'single', L=20) zc.check_and_display_mask("bluer", img, mask_bluer, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) rtn_msg = {'status': 'success'} return (rtn_msg, (mask_blue, mask_bluer, mask_table, mask_table_fat))
def find_pingpong(img, img_prev, mask_table, mask_ball_prev, rotation_matrix, display_list): def get_ball_stat(mask_ball): cnt_ball = zc.mask2cnt(mask_ball) area = cv2.contourArea(cnt_ball) center = cnt_ball.mean(axis=0)[0] center_homo = np.hstack((center, 1)).reshape(3, 1) center_rotated = np.dot(rotation_matrix, center_homo) return (area, center_rotated) rtn_msg = {'status': 'success'} mask_ball = zc.color_inrange(img, 'HSV', H_L=165, H_U=25, S_L=65, V_L=150, V_U=255) mask_screen = find_screen(img, display_list) mask_screen, _ = zc.find_largest_CC(mask_screen) mask_possible = np.bitwise_or(mask_screen, zc.expand(mask_table, 3)) mask_ball = np.bitwise_and(mask_ball, mask_possible) mask_ball, _ = zc.get_small_blobs(mask_ball, max_area=2300) mask_ball, _ = zc.get_big_blobs(mask_ball, min_area=8) mask_ball, counter = zc.get_square_blobs(mask_ball, th_diff=0.2, th_area=0.2) zc.check_and_display_mask('ball_raw', img, mask_ball, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) if counter == 0: rtn_msg = {'status': 'fail', 'message': "No good color candidate"} return (rtn_msg, None) cnt_table = zc.mask2cnt(mask_table) loc_table_center = zc.get_contour_center(cnt_table)[::-1] mask_ball_ontable = np.bitwise_and(mask_ball, mask_table) mask_ball_ontable = zc.get_closest_blob(mask_ball_ontable, loc_table_center) if mask_ball_ontable is not None: # if any ball on the table, we don't have to rely on previous ball positions mask_ball = mask_ball_ontable zc.check_and_display_mask('ball', img, mask_ball, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) return (rtn_msg, (mask_ball, get_ball_stat(mask_ball))) if mask_ball_prev is None: # mask_ball_ontable is already None rtn_msg = { 'status': 'fail', 'message': "Cannot initialize a location of ball" } return (rtn_msg, None) cnt_ball_prev = zc.mask2cnt(mask_ball_prev) loc_ball_prev = zc.get_contour_center(cnt_ball_prev)[::-1] mask_ball = zc.get_closest_blob(mask_ball, loc_ball_prev) zc.check_and_display_mask('ball', img, mask_ball, display_list, resize_max=config.DISPLAY_MAX_PIXEL, wait_time=config.DISPLAY_WAIT_TIME) cnt_ball = zc.mask2cnt(mask_ball) loc_ball = zc.get_contour_center(cnt_ball)[::-1] ball_moved_dist = zc.euc_dist(loc_ball_prev, loc_ball) if ball_moved_dist > 110: rtn_msg = { 'status': 'fail', 'message': "Lost track of ball: %d" % ball_moved_dist } return (rtn_msg, None) return (rtn_msg, (mask_ball, get_ball_stat(mask_ball)))
def find_table(img, o_img_height, o_img_width): ## find white border DoB = zc.get_DoB(img, 1, 31, method = 'Average') mask_white = zc.color_inrange(DoB, 'HSV', V_L = 10) ## find purple table (roughly) mask_table = zc.color_inrange(img, 'HSV', H_L = 130, H_U = 160, S_L = 50, V_L = 50, V_U = 220) mask_table, _ = zc.get_big_blobs(mask_table, min_area = 50) mask_table = cv2.morphologyEx(mask_table, cv2.MORPH_CLOSE, zc.generate_kernel(7, 'circular'), iterations = 1) mask_table, _ = zc.find_largest_CC(mask_table) if mask_table is None: rtn_msg = {'status': 'fail', 'message' : 'Cannot find table'} return (rtn_msg, None) mask_table_convex, _ = zc.make_convex(mask_table.copy(), app_ratio = 0.005) mask_table = np.bitwise_or(mask_table, mask_table_convex) mask_table_raw = mask_table.copy() ## fine tune the purple table based on white border mask_white = np.bitwise_and(np.bitwise_not(mask_table), mask_white) for i in range(15): mask_table = zc.expand(mask_table, 3) mask_table = np.bitwise_and(np.bitwise_not(mask_white), mask_table) if i % 4 == 3: mask_table, _ = zc.make_convex(mask_table, app_ratio = 0.01) mask_table = np.bitwise_and(np.bitwise_not(mask_white), mask_table) mask_table, _ = zc.find_largest_CC(mask_table) mask_table, hull_table = zc.make_convex(mask_table, app_ratio = 0.01) ## check if table is big enough table_area = cv2.contourArea(hull_table) table_area_percentage = float(table_area) / img.shape[0] / img.shape[1] if table_area_percentage < 0.06: rtn_msg = {'status' : 'fail', 'message' : "Detected table too small: %f" % table_area_percentage} return (rtn_msg, None) ## find top line of table hull_table = np.array(zc.sort_pts(hull_table[:,0,:], order_first = 'y')) ul = hull_table[0] ur = hull_table[1] if ul[0] > ur[0]: t = ul; ul = ur; ur = t i = 2 # the top two points in the hull are probably on the top line, but may not be the corners while i < hull_table.shape[0] and hull_table[i, 1] - hull_table[0, 1] < 80: pt_tmp = hull_table[i] if pt_tmp[0] < ul[0] or pt_tmp[0] > ur[0]: # computing the area of the part of triangle that lies inside the table triangle = np.vstack([pt_tmp, ul, ur]).astype(np.int32) mask_triangle = np.zeros_like(mask_table) cv2.drawContours(mask_triangle, [triangle], 0, 255, -1) pts = mask_table_raw[mask_triangle.astype(bool)] if np.sum(pts == 255) > 10: break if pt_tmp[0] < ul[0]: ul = pt_tmp else: ur = pt_tmp i += 1 else: break ul = [int(x) for x in ul] ur = [int(x) for x in ur] ## sanity checks about table top line detection if zc.euc_dist(ul, ur) ** 2 * 2.5 < table_area: rtn_msg = {'status' : 'fail', 'message' : "Table top line too short"} return (rtn_msg, None) if abs(zc.line_angle(ul, ur)) > 0.4: rtn_msg = {'status' : 'fail', 'message' : "Table top line tilted too much"} return (rtn_msg, None) # check if two table sides form a reasonable angle mask_table_bottom = mask_table.copy() mask_table_bottom[:-30] = 0 p_left_most = zc.get_edge_point(mask_table_bottom, (-1, 0)) p_right_most = zc.get_edge_point(mask_table_bottom, (1, 0)) if p_left_most is None or p_right_most is None: rtn_msg = {'status' : 'fail', 'message' : "Table doesn't occupy bottom part of image"} return (rtn_msg, None) left_side_angle = zc.line_angle(ul, p_left_most) right_side_angle = zc.line_angle(ur, p_right_most) angle_diff = zc.angle_dist(left_side_angle, right_side_angle, angle_range = math.pi * 2) if abs(angle_diff) > 1.8: rtn_msg = {'status' : 'fail', 'message' : "Angle between two side edge not right"} return (rtn_msg, None) ## rotate to make opponent upright, use table edge as reference pts1 = np.float32([ul,ur,[ul[0] + (ur[1] - ul[1]), ul[1] - (ur[0] - ul[0])]]) pts2 = np.float32([[0, o_img_height], [o_img_width, o_img_height], [0, 0]]) M = cv2.getAffineTransform(pts1, pts2) img[np.bitwise_not(zc.get_mask(img, rtn_type = "bool", th = 3)), :] = [3,3,3] img_rotated = cv2.warpAffine(img, M, (o_img_width, o_img_height)) ## sanity checks about rotated opponent image bool_img_rotated_valid = zc.get_mask(img_rotated, rtn_type = "bool") if float(bool_img_rotated_valid.sum()) / o_img_width / o_img_height < 0.7: rtn_msg = {'status' : 'fail', 'message' : "Valid area too small after rotation"} return (rtn_msg, None) rtn_msg = {'status' : 'success'} return (rtn_msg, (img_rotated, mask_table, M))