Example #1
0
def set_paras(sample, key, value=None):
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    if value is None:
        values = list(map(lambda q: q.get(key), qubits))
        return values
    else:
        for Q in Qubits:
            Q[key] = value
        return value
Example #2
0
def qqiswap(sample, measure=0, delay=20 * ns, zpa=None, name='iswap', des=''):
    """
        sample: select experimental parameter from registry;
        stats: Number of Samples for one sweep point;
    """
    sample, qubits, Qubits = loadQubits(sample, write_access=True)

    prep_Nqbit(qubits)

    q = qubits[measure]
    q_ref = qubits[0]
    if zpa is None:
        zpa = q['zpa']

    # set some parameters name;
    axes = [(delay, 'delay'), (zpa, 'zpa')]
    deps = deps_Nqbitpopu(nq=2, qLevel=2)

    # create dataset
    dataset = sweeps.prepDataset(sample, name, axes, deps, kw={})

    def runSweeper(devices, para_list):
        delay, zpa = para_list

        start = 0.

        q.xy = XYnothing(q)
        addXYgate(q, start, np.pi, 0.)

        start += q['piLen']['s'] + 50e-9

        q.z = waveforms.square(amp=zpa,
                               start=start,
                               length=q.piLen[s] + 100e-9)

        start += 100e-9
        start += q['qa_start_delay'][s]

        for _q in qubits:
            _q.r = readoutPulse(_q)
            _q['experiment_length'] = start
            _q['do_readout'] = True

        set_qubitsDC(qubits, q_ref['experiment_length'])

        data = runQ(qubits, devices)
        prob = tunneling(qubits, data, level=2)
        clear_waveforms(qubits)
        return prob

    axes_scans = gridSweep(axes)
    result_list = RunAllExp(runSweeper, axes_scans, dataset)
    return
Example #3
0
def tune_f21(sample,
             dh,
             df=ar[-40:40:2, MHz],
             idx_pro=7,
             measure=0,
             _key='f21'):
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    Qubit = Qubits[measure]
    mp.rabihigh21(sample,
                  piamp21=None,
                  df=df,
                  measure=measure,
                  name='rabihigh ' + _key)
    time.sleep(0.5)
    _tune_freq(sample, dh, Qubit, idx=-1, idx_pro=idx_pro, _key=_key)
Example #4
0
def Nqubit_state(sample,
                 reps=10,
                 measure=[0, 1],
                 states=[0, 0],
                 name='Nqubit_state',
                 des=''):
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    reps = np.arange(reps)
    prep_Nqbit(qubits)
    axes = [(reps, 'reps')]
    labels = gene_binary(len(measure), 2)

    states_str = functools.reduce(lambda x, y: str(x) + str(y), states)

    def get_dep(x):
        return ('', 'measure ' + str(x), '')

    deps = list(map(get_dep, labels))

    q_ref = qubits[0]
    kw = {}
    kw['states'] = states
    dataset = sweeps.prepDataset(sample, name + des, axes, deps, kw=kw)

    def runSweeper(devices, para_list):
        start = 0.
        for i, _qb in enumerate(qubits):
            _qb.xy = XYnothing(_qb)
            addXYgate(_qb, start, np.pi * states[i], 0.)

        start += max(map(lambda q: q['piLen']['s'], qubits)) + 50e-9
        for _q in qubits:
            _q.r = readoutPulse(_q)
            _q['experiment_length'] = start
            _q['do_readout'] = True

        set_qubitsDC(qubits, q_ref['experiment_length'])
        data = runQ(qubits, devices)
        prob = tunneling(qubits, data, level=2)
        clear_waveforms(qubits)
        return prob

    axes_scans = gridSweep(axes)
    result_list = RunAllExp(runSweeper, axes_scans, dataset)
    return
Example #5
0
def tune_piamp(sample,
               dh,
               idx=-1,
               idx_pro=5,
               measure=0,
               amp_key='piAmp',
               steps=30):
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    Qubit = Qubits[measure]
    piamp0 = Qubit[amp_key]
    mp.rabihigh(sample,
                piamp=ar[0.:2. * piamp0:2. * piamp0 / steps],
                measure=measure,
                name='rabihigh ' + amp_key)
    time.sleep(0.5)
    _tune_piamp(sample,
                dh,
                Qubit,
                idx=idx,
                idx_pro=idx_pro,
                plot=True,
                update=True,
                amp_key=amp_key)
Example #6
0
def measureFidelity(sample,
                    rep=10,
                    measure=0,
                    stats=1024,
                    update=True,
                    analyze=False,
                    name='measureFidelity',
                    des='',
                    back=True):
    reps = np.arange(rep)

    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    q = qubits[measure]
    Qb = Qubits[measure]
    q.channels = dict(q['channels'])

    for qb in qubits:
        qb.demod_freq = qb['readout_freq'][Hz] - qb['readout_mw_fc'][Hz]

    q.sb_freq = (q['f10'] - q['xy_mw_fc'])[Hz]

    # set some parameters name;
    axes = [(reps, 'reps')]

    def deps_text(idxs):
        return ('measure |%d>, prepare (|%d>)' % (idxs[0], idxs[1]), '', '')

    deps = list(map(deps_text, itertools.product([0, 1], [0, 1])))

    kw = {'stats': stats}

    # create dataset
    dataset = sweeps.prepDataset(sample,
                                 name + des,
                                 axes,
                                 deps,
                                 kw=kw,
                                 measure=measure)

    def runSweeper(devices, para_list):
        # with pi pulse --> |1> ##
        reps = para_list
        start = 0
        q.z = waveforms.square(amp=q.zpa[V],
                               start=start,
                               length=q.piLen[s] + 100e-9)
        start += 50e-9

        q.xy = XYnothing(q)
        addXYgate(q, start, np.pi, 0.)

        start += q['piLen']['s'] + 50e-9
        start += 100e-9
        start += q['qa_start_delay'][s]

        for _q in qubits:
            _q.r = readoutPulse(_q)
            _q['experiment_length'] = start
            _q['do_readout'] = True
        set_qubitsDC(qubits, q['experiment_length'])

        result = []
        # start to run experiment
        data1 = runQ(qubits, devices)[measure]

        # no pi pulse --> |0> ##
        q.xy = XYnothing(q)
        addXYgate(q, start, 0., 0.)

        # start to run experiment
        data0 = runQ(qubits, devices)[measure]

        prob0 = tunneling([q], [data0], level=2)
        prob1 = tunneling([q], [data1], level=2)
        clear_waveforms(qubits)
        return [prob0[0], prob1[0], prob0[1], prob1[1]]

    axes_scans = gridSweep(axes)
    results = RunAllExp(runSweeper, axes_scans, dataset)
    if update:
        Qb['MatRead'] = np.mean(results, 0)[1:].reshape(2, 2)
    if back:
        return results
Example #7
0
def IQraw210(sample,
             measure=0,
             stats=1024,
             update=False,
             analyze=False,
             reps=1,
             name='IQ raw210',
             des='',
             back=True):
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    q = qubits[measure]
    Qb = Qubits[measure]

    for qb in qubits:
        qb.power_r = power2amp(qb['readout_amp']['dBm'])
        qb.demod_freq = qb['readout_freq'][Hz] - qb['readout_mw_fc'][Hz]

    q['stats'] = stats
    # set some parameters name;
    axes = [(reps, 'reps')]
    deps = []
    for i in range(3):
        deps += [('Is', str(i), ''), ('Qs', str(i), '')]
    kw = {'stats': stats}

    # create dataset
    dataset = sweeps.prepDataset(sample,
                                 name + des,
                                 axes,
                                 deps,
                                 kw=kw,
                                 measure=measure)

    def get_IQ(data):
        Is = np.real(data[0])
        Qs = np.imag(data[0])
        return [Is, Qs]

    def runSweeper(devices, para_list):
        reps = para_list[0]
        # |1>
        start = 0
        q.z = waveforms.square(amp=q.zpa[V],
                               start=start,
                               length=q.piLen[s] + q.piLen21[s])

        q['xy'] = XYnothing(q)
        addXYgate(q, start, theta=np.pi, phi=0.)

        start += q.piLen[s] + q.piLen21[s]
        start += q['qa_start_delay'][s]

        for _qb in qubits:
            _qb['experiment_length'] = start

        q['do_readout'] = True

        set_qubitsDC(qubits, q['experiment_length'])
        q.r = readoutPulse(q)

        # start to run experiment
        data1 = runQ(qubits, devices)

        # state 2
        start = 0
        q.z = waveforms.square(amp=q.zpa['V'],
                               start=start,
                               length=q.piLen['s'] + q.piLen21['s'])

        q['xy'] = XYnothing(q)
        addXYgate(q, start, theta=np.pi, phi=0.)
        start += q.piLen['s']
        addXYgate(q,
                  start,
                  theta=np.pi,
                  phi=0.,
                  piAmp='piAmp21',
                  fq='f21',
                  piLen='piLen21')

        start += q.piLen21['s']
        start += q['qa_start_delay'][s]

        data2 = runQ(qubits, devices)

        # state 0
        q.xy = [waveforms.square(amp=0), waveforms.square(amp=0)]
        data0 = runQ(qubits, devices)

        result = []
        for data in [data0, data1, data2]:
            result += get_IQ(data)
        clear_waveforms(qubits)
        return result

    collect, raw = True, True
    axes_scans = gridSweep(axes)
    results = RunAllExp(runSweeper, axes_scans, dataset, collect, raw)
    data = np.asarray(results[0])
    if update:
        adjuster.IQ_center_multilevel(qubit=Qb, data=data)
    return data
Example #8
0
def IQraw(sample,
          measure=0,
          stats=16384,
          update=False,
          analyze=False,
          reps=1,
          name='IQ raw',
          des='',
          back=True):
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    q = qubits[measure]
    Qb = Qubits[measure]
    q.channels = dict(q['channels'])
    q['stats'] = stats
    for qb in qubits:
        qb.power_r = power2amp(qb['readout_amp']['dBm'])
        qb.demod_freq = qb['readout_freq'][Hz] - qb['readout_mw_fc'][Hz]

    # set some parameters name;
    axes = [(reps, 'reps')]
    deps = [('Is', '|0>', ''), ('Qs', '|0>', ''), ('Is', '|1>', ''),
            ('Qs', '|1>', '')]
    kw = {'stats': stats}

    # create dataset
    dataset = sweeps.prepDataset(sample,
                                 name + des,
                                 axes,
                                 deps,
                                 kw=kw,
                                 measure=measure)

    def runSweeper(devices, para_list):
        reps = para_list[0]
        # with pi pulse --> |1> ##
        start = 0
        q.z = waveforms.square(amp=q.zpa[V],
                               start=start,
                               length=q.piLen[s] + 100e-9)
        start += 50e-9

        q['xy'] = XYnothing(q)
        addXYgate(q, start, theta=np.pi, phi=0.)

        start += q.piLen[s] + 50e-9
        start += 100e-9
        start += q['qa_start_delay'][s]

        for _q in qubits:
            _q.r = readoutPulse(_q)
            _q['experiment_length'] = start
            _q['do_readout'] = True
        set_qubitsDC(qubits, q['experiment_length'])

        # start to run experiment
        data1 = runQ(qubits, devices)[measure]

        q['xy'] = XYnothing(q)
        data0 = runQ(qubits, devices)[measure]

        Is0 = np.real(data0)
        Qs0 = np.imag(data0)
        Is1 = np.real(data1)
        Qs1 = np.imag(data1)

        result = [Is0, Qs0, Is1, Qs1]
        clear_waveforms(qubits)
        return result

    collect, raw = True, True
    axes_scans = gridSweep(axes)

    results = RunAllExp(runSweeper, axes_scans, dataset, collect, raw)
    data = np.asarray(results[0])
    # print(data)
    if update:
        dataProcess._updateIQraw2(data=data,
                                  Qb=Qb,
                                  dv=None,
                                  update=update,
                                  analyze=analyze)
    return data
Example #9
0
def rabihigh21(sample,
               measure=0,
               stats=1024,
               piamp21=None,
               piLen21=None,
               df=0 * MHz,
               zpa=None,
               name='rabihigh21',
               des='',
               back=False):
    """
        sample: select experimental parameter from registry;
        stats: Number of Samples for one sweep point;
    """
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    q = qubits[measure]
    q.channels = dict(q['channels'])
    q_copy = q.copy()
    if zpa is None:
        zpa = q['zpa']
    if piamp21 is None:
        piamp21 = q['piAmp21']
    if piLen21 is None:
        piLen21 = q['piLen21']

    q.power_r = power2amp(q['readout_amp']['dBm'])
    q.demod_freq = q['readout_freq'][Hz] - q['readout_mw_fc'][Hz]

    # set some parameters name;
    axes = [(zpa, 'zpa'), (df, 'df'), (piamp21, 'piamp21'),
            (piLen21, 'piLen21')]

    deps = dependents_1q()[:-1]
    deps_pro = [('pro', str(i), '') for i in range(3)]
    deps.extend(deps_pro)
    kw = {'stats': stats}

    for qb in qubits:
        qb['awgs_pulse_len'] += q['piLen'] + q['piLen21']

    # create dataset
    dataset = sweeps.prepDataset(sample,
                                 name + des,
                                 axes,
                                 deps,
                                 kw=kw,
                                 measure=measure)

    def runSweeper(devices, para_list):
        zpa, df, piamp21, piLen21 = para_list
        q['piAmp21'] = piamp21
        q['piLen21'] = Value(piLen21, 's')
        q['f21'] = q_copy['f21'] + Value(df, 'Hz')

        start = 0.
        q.z = waveforms.square(amp=zpa,
                               start=start,
                               length=q.piLen['s'] + q.piLen21['s'])

        q['xy'] = XYnothing(q)
        addXYgate(q, start, theta=np.pi, phi=0.)

        start += q['piLen']['s']
        start += 50e-9

        addXYgate(q,
                  start,
                  theta=np.pi,
                  phi=0.,
                  piAmp='piAmp21',
                  fq='f21',
                  piLen='piLen21')
        start += q['piLen21']['s']

        start += 100e-9
        start += q['qa_start_delay']['s']

        q['experiment_length'] = start
        q['do_readout'] = True

        set_qubitsDC(qubits, q['experiment_length'])
        q.r = readoutPulse(q)

        data = runQ([q], devices)

        _d_ = data[0]
        amp = np.abs(np.mean(_d_)) / q.power_r
        phase = np.angle(np.mean(_d_))
        Iv = np.mean(np.real(_d_))
        Qv = np.mean(np.imag(_d_))
        prob = tunneling([q], [_d_], level=3)
        # multiply channel should unfold to a list for return result
        result = [amp, phase, Iv, Qv, prob[0], prob[1], prob[2]]
        clear_waveforms(qubits)
        return result

    axes_scans = gridSweep(axes)
    result_list = RunAllExp(runSweeper, axes_scans, dataset)
    return
Example #10
0
def rabihigh(sample,
             measure=0,
             stats=1024,
             piamp=None,
             piLen=None,
             df=0 * MHz,
             bias=None,
             zpa=None,
             name='rabihigh',
             des='',
             back=False):
    """
        sample: select experimental parameter from registry;
        stats: Number of Samples for one sweep point;
    """
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    q = qubits[measure]

    if bias is None:
        bias = q['bias']
    if zpa is None:
        zpa = q['zpa']
    if piamp is None:
        piamp = q['piAmp']
    if piLen is None:
        piLen = q['piLen']

    q.power_r = power2amp(q['readout_amp']['dBm'])
    q.demod_freq = q['readout_freq'][Hz] - q['readout_mw_fc'][Hz]
    q.sb_freq = (q['f10'] - q['xy_mw_fc'])[Hz]

    # set some parameters name;
    axes = [(bias, 'bias'), (zpa, 'zpa'), (df, 'df'), (piamp, 'piamp'),
            (piLen, 'piLen')]
    deps = dependents_1q()
    kw = {'stats': stats}

    for qb in qubits:
        qb['awgs_pulse_len'] += np.max(piLen)  # add max length of hd waveforms

    # create dataset
    dataset = sweeps.prepDataset(sample,
                                 name + des,
                                 axes,
                                 deps,
                                 kw=kw,
                                 measure=measure)

    q_copy = q.copy()

    def runSweeper(devices, para_list):
        bias, zpa, df, piamp, piLen = para_list
        # since we only have one uwave source
        for _qb in qubits:
            _qb['xy_mw_fc'] = q_copy['xy_mw_fc'] + df * Hz

        start = 0
        q.z = waveforms.square(amp=zpa, start=start, length=piLen + 100e-9)
        start += 50e-9
        q.xy = [
            waveforms.cosine(amp=piamp,
                             freq=q.sb_freq,
                             start=start,
                             length=piLen),
            waveforms.sine(amp=piamp,
                           freq=q.sb_freq,
                           start=start,
                           length=piLen)
        ]
        start += piLen + 50e-9
        q['bias'] = bias * V

        # additional readout gap, avoid hdawgs fall affect
        start += 100e-9
        # align qa & hd start
        start += q['qa_start_delay']['s']

        q['experiment_length'] = start
        q['do_readout'] = True
        set_qubitsDC(qubits, q['experiment_length'])
        q.r = readoutPulse(q)
        data = runQ(qubits, devices)[0]
        clear_waveforms(qubits)
        return processData_1q(data, q)

    axes_scans = gridSweep(axes)
    result_list = RunAllExp(runSweeper, axes_scans, dataset)
Example #11
0
def spectroscopy(sample,
                 measure=0,
                 stats=1024,
                 freq=None,
                 specLen=1 * us,
                 specAmp=0.05,
                 sb_freq=None,
                 bias=None,
                 zpa=None,
                 name='spectroscopy',
                 des='',
                 back=False):
    """
        sample: select experimental parameter from registry;
        stats: Number of Samples for one sweep point;
    """
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    q = qubits[measure]
    q.stats = stats

    if freq is None:
        freq = q['f10']
    if bias is None:
        bias = q['bias']
    if zpa is None:
        zpa = q['zpa']
    if sb_freq is None:
        sb_freq = (q['f10'] - q['xy_mw_fc'])

    q.power_r = power2amp(q['readout_amp']['dBm'])
    q.demod_freq = (q['readout_freq'] - q['readout_mw_fc'])[Hz]

    # set some parameters name;
    axes = [(freq, 'freq'), (specAmp, 'specAmp'), (specLen, 'specLen'),
            (bias, 'bias'), (zpa, 'zpa')]
    deps = dependents_1q()
    kw = {'stats': stats, 'sb_freq': sb_freq}

    for qb in qubits:
        # add max length of hd waveforms
        qb['awgs_pulse_len'] += np.max(specLen)
    # create dataset
    dataset = sweeps.prepDataset(sample,
                                 name + des,
                                 axes,
                                 deps,
                                 kw=kw,
                                 measure=measure)

    def runSweeper(devices, para_list):
        freq, specAmp, specLen, bias, zpa = para_list

        q['xy_mw_fc'] = freq * Hz - sb_freq

        start = 0
        q.z = waveforms.square(amp=zpa, start=start, length=specLen + 100e-9)
        start += 50e-9
        q.xy = [
            waveforms.cosine(amp=specAmp,
                             freq=sb_freq['Hz'],
                             start=start,
                             length=specLen),
            waveforms.sine(amp=specAmp,
                           freq=sb_freq['Hz'],
                           start=start,
                           length=specLen)
        ]
        start += specLen + 50e-9
        q['bias'] = bias

        start += 100e-9
        start += q['qa_start_delay']['s']

        q['experiment_length'] = start
        q['do_readout'] = True
        set_qubitsDC(qubits, q['experiment_length'])
        q.r = readoutPulse(q)

        data = runQ(qubits, devices)[measure]
        clear_waveforms(qubits)
        return processData_1q(data, q)

    axes_scans = gridSweep(axes)
    result_list = RunAllExp(runSweeper, axes_scans, dataset)
    if back:
        return result_list
Example #12
0
def IQ_cali(sample,
            dh,
            idx=-1,
            measure=0,
            n_cluster=None,
            plot=True,
            update=True,
            plot_scatter=True,
            cmap='Greys',
            do_return=False):
    """
    Args:
        dh: zilabrad.plots.dataProcess.datahelp
        idx: iq raw data index
        level: number of clusters, default is len(data) //2,
        for example, data is [I0,Q0,I1,Q1], then level = 4//2 = 2
        measure: index for qubit, whose IQ center will be updated
    """
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    Q = Qubits[measure]

    data = dh.getDataset(idx)
    _centers_average = np.mean(data, 0)
    level = len(_centers_average) // 2
    if n_cluster is None:
        n_cluster = level
    centers_average = _centers_average.reshape(level, 2)

    def get_IQ_data(i):
        return data[:, [2 * i, 2 * i + 1]]

    def IQ_center_assign(center_state, centers):
        # center_state (array): the averaged IQ data
        # [I,Q] for a given state
        dis = []
        for i, center in enumerate(centers):
            _dis = np.linalg.norm(center - center_state, ord=2)
            dis.extend([_dis])
        dis = np.asarray(dis)
        idx = np.where(dis == np.min(dis))
        return np.int(idx[0])

    data_cluster = np.vstack(list(map(get_IQ_data, range(level))))
    state_pred = KMeans(n_clusters=n_cluster).fit_predict(data_cluster)

    _return = {}

    centers = np.zeros((level, 2))
    for i in range(level):
        xs = data_cluster[state_pred == i, 0]
        ys = data_cluster[state_pred == i, 1]
        center = np.mean(xs), np.mean(ys)
        centers[i] = center

    idx_assign = []
    if update:
        for i in range(level):
            idx = IQ_center_assign(centers_average[i], centers)
            idx_assign += [idx]
            Q[f'center|{i}>'] = centers[idx]
            print(f'update: center|{i}> = {np.round(centers[idx],3)}')

    centers_I, centers_Q = centers[idx_assign, 0], centers[idx_assign, 1]

    def plot_cali_center():
        facecolor = 'w'
        colors = color_generator(level)
        for i in range(level):
            color_i = next(colors)['color']
            ax.scatter(centers_I[i],
                       centers_Q[i],
                       linewidth=2,
                       facecolor=facecolor,
                       edgecolor=color_i,
                       s=200,
                       marker="*",
                       label=i)
        plt.legend()
        return

    if plot:
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        data_hist2d = ax.hist2d(*data_cluster.T,
                                bins=50,
                                cmap=cmap,
                                shading='auto')

        plot_cali_center()
        plt.show()

    if plot_scatter:
        colors = color_generator(level)
        for i in range(level):
            color_i = next(colors)['color']
            plt.scatter(*data[:1000, [2 * i, 2 * i + 1]].T,
                        alpha=0.2,
                        label=i,
                        color=color_i)
        plot_cali_center()
        plt.legend()
    # for test
    if do_return:
        _return['centers'] = centers
        _return['data_hist2d'] = data_hist2d
        return _return
Example #13
0
def correct_zero(sample):
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    qc = qubitContext()
    corr = qc.zero_correction
    for qubit in qubits:
        corr.correct_xy(qubit)
Example #14
0
def Qstate_tomo(sample,
                rep=10,
                state=[0, 1],
                name='tomoTest',
                tbuffer=10e-9,
                des=''):
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    num_q = len(qubits)
    prep_Nqbit(qubits)
    reps = range(rep)
    axes = [(reps, 'reps')]
    deps = tomo_deps(num_q)
    piLens = list(map(lambda q: q['piLen'], qubits))
    kw = {'state': state}
    dataset = sweeps.prepDataset(sample, name, axes, deps, kw=kw)
    fid_matNq = read_correct_mat(qubits)

    def add_tomo_gate(qubits, idx_qst, start):
        angles = [0, np.pi / 2, np.pi / 2]
        phases = [0, 0, np.pi / 2]
        _base3 = number_to_base(idx_qst, 3)
        idx_qst_base3 = [0] * (len(qubits) - len(_base3)) + _base3
        for i, _qt in enumerate(qubits):
            idx_pulse = idx_qst_base3[i]
            theta = angles[idx_pulse]
            phi = phases[idx_pulse]
            addXYgate(_qt, start, theta, phi)
        return

    def prepare_state(qubits, start):
        for i, q in enumerate(qubits):
            q['xy'] = XYnothing(q)
            if state[i] == 1:
                addXYgate(q, start, np.pi, 0.)
            else:
                addXYgate(q, start, 0., 0.)
        return

    def read_pulse(qubits, start):
        for _q in qubits:
            _q.r = readoutPulse(_q)
            _q['experiment_length'] = start
            _q['do_readout'] = True
        set_qubitsDC(qubits, qubits[0]['experiment_length'])
        return

    def get_prob(data):
        prob_raw = tunneling(qubits, data, level=2)
        prob = np.asarray(np.dot(fid_matNq, prob_raw))[0]
        return prob

    def runSweeper(devices, para_list):
        reps = para_list
        reqs = []
        q_ref = qubits[0]
        for idx_qst in np.arange(3**len(qubits)):
            start = 0.
            prepare_state(qubits, start)
            start += np.max(piLens)['s'] + tbuffer

            add_tomo_gate(qubits, idx_qst, start)
            start += np.max(piLens)['s'] + tbuffer
            start += q_ref['qa_start_delay']['s']

            read_pulse(qubits, start)
            data = runQ(qubits, devices)
            prob = get_prob(data)
            reqs.append(prob)
        clear_waveforms(qubits)
        return np.hstack(reqs)

    axes_scans = gridSweep(axes)
    result_list = RunAllExp(runSweeper, axes_scans, dataset)
    return
Example #15
0
def s21_dispersiveShift(sample,
                        measure=0,
                        stats=1024,
                        freq=ar[6.4:6.5:0.02, GHz],
                        delay=0 * ns,
                        mw_power=None,
                        bias=None,
                        power=None,
                        sb_freq=None,
                        name='s21_disperShift',
                        des='',
                        back=False):
    """
        sample: select experimental parameter from registry;
        stats: Number of Samples for one sweep point;
    """
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    q = qubits[measure]
    q.channels = dict(q['channels'])

    if bias is None:
        bias = q['bias']
    if power is None:
        power = q['readout_amp']
    if sb_freq is None:
        sb_freq = q['readout_freq'][Hz] - q['readout_mw_fc'][Hz]
    if mw_power is None:
        mw_power = q['readout_mw_power']
    q.awgs_pulse_len += np.max(delay)  # add max length of hd waveforms
    q.demod_freq = q['readout_freq'][Hz] - q['readout_mw_fc'][Hz]

    # set some parameters name;
    axes = [(freq, 'freq'), (bias, 'bias'), (power, 'power'),
            (sb_freq, 'sb_freq'), (mw_power, 'mw_power'), (delay, 'delay')]
    deps = [('Amplitude|0>', 'S11 for %s' % q.__name__, ''),
            ('Phase|0>', 'S11 for %s' % q.__name__, rad)]
    deps.append(('I|0>', '', ''))
    deps.append(('Q|0>', '', ''))

    deps.append(('Amplitude|1>', 'S11 for %s' % q.__name__, rad))
    deps.append(('Phase|1>', 'S11 for %s' % q.__name__, rad))
    deps.append(('I|1>', '', ''))
    deps.append(('Q|1>', '', ''))
    deps.append(('SNR', '', ''))

    kw = {'stats': stats}

    # create dataset
    dataset = sweeps.prepDataset(sample,
                                 name + des,
                                 axes,
                                 deps,
                                 kw=kw,
                                 measure=measure)

    def runSweeper(devices, para_list):
        freq, bias, power, sb_freq, mw_power, delay = para_list
        q['readout_amp'] = power * dBm
        q.power_r = power2amp(power)

        # set microwave source device
        q['readout_mw_fc'] = (freq - q['demod_freq']) * Hz

        # write waveforms
        # with pi pulse --> |1> ##
        q.xy_sb_freq = (q['f10'] - q['xy_mw_fc'])[Hz]
        start = 0
        q.z = waveforms.square(amp=q.zpa[V],
                               start=start,
                               length=q.piLen[s] + 100e-9)
        start += 50e-9
        q.xy = [
            waveforms.cosine(amp=q.piAmp,
                             freq=q.xy_sb_freq,
                             start=start,
                             length=q.piLen[s]),
            waveforms.sine(amp=q.piAmp,
                           freq=q.xy_sb_freq,
                           start=start,
                           length=q.piLen[s])
        ]
        start += q.piLen[s] + 50e-9
        q['bias'] = bias

        start += delay
        start += 100e-9
        start += q['qa_start_delay'][s]

        q['experiment_length'] = start
        set_qubitsDC(qubits, q['experiment_length'])
        q['do_readout'] = True
        q.r = readoutPulse(q)

        # start to run experiment
        data1 = runQ([q], devices)

        # no pi pulse --> |0> ##
        q.xy = [waveforms.square(amp=0), waveforms.square(amp=0)]

        # start to run experiment
        data0 = runQ([q], devices)

        # analyze data and return
        _d_ = data0[0]
        # unit: dB; only relative strength;
        amp0 = np.abs(np.mean(_d_)) / q.power_r
        phase0 = np.angle(np.mean(_d_))
        Iv0 = np.mean(np.real(_d_))
        Qv0 = np.mean(np.imag(_d_))

        _d_ = data1[0]
        # unit: dB; only relative strength;
        amp1 = np.abs(np.mean(_d_)) / q.power_r
        phase1 = np.angle(np.mean(_d_))
        Iv1 = np.mean(np.real(_d_))
        Qv1 = np.mean(np.imag(_d_))
        # multiply channel should unfold to a list for return result
        result = [amp0, phase0, Iv0, Qv0]
        result += [amp1, phase1, Iv1, Qv1]
        result += [np.abs((Iv1 - Iv0) + 1j * (Qv1 - Qv0))]
        clear_waveforms(qubits)
        return result

    axes_scans = gridSweep(axes)
    result_list = RunAllExp(runSweeper, axes_scans, dataset)
    if back:
        return result_list
Example #16
0
def T1_visibility(sample,
                  measure=0,
                  stats=1024,
                  delay=0.8 * us,
                  zpa=None,
                  bias=None,
                  name='T1_visibility',
                  des='',
                  back=False):
    """ sample: select experimental parameter from registry;
        stats: Number of Samples for one sweep point;
    """
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    q = qubits[measure]
    for qb in qubits:
        qb.channels = dict(qb['channels'])

    if bias is None:
        bias = q['bias']
    if zpa is None:
        zpa = q['zpa']
    q.power_r = power2amp(q['readout_amp']['dBm'])
    q.demod_freq = q['readout_freq'][Hz] - q['readout_mw_fc'][Hz]
    q.sb_freq = (q['f10'] - q['xy_mw_fc'])[Hz]

    for qb in qubits:
        qb['awgs_pulse_len'] += np.max(delay)  # add max length of hd waveforms

    # set some parameters name;
    axes = [(bias, 'bias'), (zpa, 'zpa'), (delay, 'delay')]
    deps = [('Amplitude', '1', 'a.u.'), ('Phase', '1', 'rad'),
            ('prob with pi pulse', '|1>', ''), ('Amplitude', '0', 'a.u.'),
            ('Phase', '0', 'rad'), ('prob without pi pulse', '|1>', '')]

    kw = {'stats': stats}

    # create dataset
    dataset = sweeps.prepDataset(sample,
                                 name + des,
                                 axes,
                                 deps,
                                 kw=kw,
                                 measure=measure)

    def runSweeper(devices, para_list):
        bias, zpa, delay = para_list
        # ## set device parameter

        # ----- with pi pulse ----- ###
        start = 0
        q['bias'] = bias

        q.z = waveforms.square(amp=zpa,
                               start=start,
                               length=delay + q.piLen[s] + 100e-9)
        start += 10e-9

        q.xy = XYnothing(q)
        addXYgate(q, start, np.pi, 0.)

        start += q.piLen['s'] + delay
        start += q['qa_start_delay']['s']

        q['experiment_length'] = start
        set_qubitsDC(qubits, q['experiment_length'])
        q['do_readout'] = True
        q.r = readoutPulse(q)

        # start to run experiment
        data1 = runQ(qubits, devices)
        # analyze data and return
        _d_ = data1[0]
        # unit: dB; only relative strength;
        amp1 = np.mean(np.abs(_d_)) / q.power_r
        phase1 = np.mean(np.angle(_d_))
        prob1 = tunneling([q], [_d_], level=2)

        # ----- without pi pulse ----- ###
        q.xy = XYnothing(q)
        # start to run experiment
        data0 = runQ(qubits, devices)
        _d_ = data0[0]
        # analyze data and return
        amp0 = np.abs(np.mean(_d_)) / q.power_r
        phase0 = np.angle(np.mean(_d_))
        prob0 = tunneling([q], [_d_], level=2)

        # multiply channel should unfold to a list for return result
        result = [amp1, phase1, prob1[1], amp0, phase0, prob0[1]]
        clear_waveforms(qubits)
        return result

    axes_scans = gridSweep(axes)
    result_list = RunAllExp(runSweeper, axes_scans, dataset)
Example #17
0
def ramsey(sample,
           measure=0,
           stats=1024,
           delay=ar[0:10:0.4, us],
           repetition=1,
           df=0 * MHz,
           fringeFreq=10 * MHz,
           PHASE=0,
           name='ramsey',
           des='',
           back=False):
    """ sample: select experimental parameter from registry;
        stats: Number of Samples for one sweep point;
    """
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    q = qubits[measure]

    q.power_r = power2amp(q['readout_amp']['dBm'])
    q.demod_freq = q['readout_freq'][Hz] - q['readout_mw_fc'][Hz]
    q.sb_freq = (q['f10'] - q['xy_mw_fc'])[Hz]
    for qb in qubits:
        qb['awgs_pulse_len'] += np.max(delay)
    # set some parameters name;
    axes = [(repetition, 'repetition'), (delay, 'delay'), (df, 'df'),
            (fringeFreq, 'fringeFreq'), (PHASE, 'PHASE')]
    deps = [('Amplitude', 's21 for', 'a.u.'), ('Phase', 's21 for', 'rad'),
            ('I', '', ''), ('Q', '', ''), ('prob |1>', '', '')]

    kw = {'stats': stats, 'fringeFreq': fringeFreq}

    # create dataset
    dataset = sweeps.prepDataset(sample,
                                 name + des,
                                 axes,
                                 deps,
                                 kw=kw,
                                 measure=measure)

    q_copy = q.copy()

    def runSweeper(devices, para_list):
        repetition, delay, df, fringeFreq, PHASE = para_list
        # set device parameter
        q['xy_mw_fc'] = q_copy['xy_mw_fc'] + df * Hz
        # ----- begin waveform ----- ###
        start = 0
        q.z = waveforms.square(amp=q.zpa[V],
                               start=start,
                               length=delay + 2 * q.piLen[s] + 100e-9)
        start += 50e-9
        q.xy = XYnothing(q)
        addXYgate(q, start, theta=np.pi / 2., phi=0.)

        start += delay + q.piLen['s']

        addXYgate(q,
                  start,
                  theta=np.pi / 2.,
                  phi=PHASE + fringeFreq * delay * 2. * np.pi)

        start += q.piLen[s] + 50e-9
        start += 100e-9 + q['qa_start_delay'][s]

        q['experiment_length'] = start
        set_qubitsDC(qubits, q['experiment_length'])
        q['do_readout'] = True
        q.r = readoutPulse(q)

        # start to run experiment
        data = runQ(qubits, devices)
        # analyze data and return
        _d_ = data[0]
        # unit: dB; only relative strength;
        amp = np.abs(np.mean(_d_)) / q.power_r
        phase = np.angle(np.mean(_d_))
        Iv = np.mean(np.real(_d_))
        Qv = np.mean(np.imag(_d_))
        prob = tunneling([q], [_d_], level=2)

        # multiply channel should unfold to a list for return result
        result = [amp, phase, Iv, Qv, prob[1]]
        clear_waveforms(qubits)
        return result

    axes_scans = gridSweep(axes)
    result_list = RunAllExp(runSweeper, axes_scans, dataset)
Example #18
0
def s21_scan(sample,
             measure=0,
             stats=1024,
             freq=6.0 * GHz,
             delay=0 * ns,
             phase=0,
             mw_power=None,
             bias=None,
             power=None,
             zpa=0.0,
             name='s21_scan',
             des=''):
    """
    s21 scanning
    Args:
        sample: select experimental parameter from registry;
        stats: Number of Samples for one sweep point;
    """
    sample, qubits, Qubits = loadQubits(sample, write_access=True)
    q = qubits[measure]
    q.channels = dict(q['channels'])
    q.stats = stats
    if freq is None:
        freq = q['readout_freq']
    if bias is None:
        bias = q['bias']
    if power is None:
        power = q['readout_amp']

    q.power_r = power2amp(q['readout_amp']['dBm'])
    q.demod_freq = q['readout_freq'][Hz] - q['readout_mw_fc'][Hz]
    if mw_power is None:
        mw_power = q['readout_mw_power']
    q.awgs_pulse_len += np.max(delay)  # add max length of hd waveforms

    # set some parameters name;
    axes = [(freq, 'freq'), (bias, 'bias'), (zpa, 'zpa'), (power, 'power'),
            (mw_power, 'mw_power'), (delay, 'delay'), (phase, 'phase')]
    deps = [('Amplitude', 's21 for', 'a.u.'), ('Phase', 's21 for', 'rad'),
            ('I', '', ''), ('Q', '', '')]
    kw = {'stats': stats}

    # create dataset
    dataset = sweeps.prepDataset(sample,
                                 name + des,
                                 axes,
                                 deps,
                                 measure=measure,
                                 kw=kw)

    def runSweeper(devices, para_list):
        freq, bias, zpa, power, mw_power, delay, phase = para_list
        q['bias'] = Value(bias, 'V')

        q['readout_amp'] = power * dBm
        q.power_r = power2amp(power)

        q['readout_mw_fc'] = (freq - q['demod_freq']) * Hz
        start = 0
        q.z = waveforms.square(amp=zpa)
        q.xy = [waveforms.square(amp=0), waveforms.square(amp=0)]
        start += delay
        start += 100e-9
        start += q['qa_start_delay']['s']

        for _qb in qubits:
            _qb['experiment_length'] = start

        q['do_readout'] = True
        q.r = readoutPulse(q)
        set_qubitsDC(qubits, q['experiment_length'])

        data = runQ([q], devices)

        _d_ = data[0]
        amp = np.abs(np.mean(_d_)) / q.power_r
        phase = np.angle(np.mean(_d_))
        Iv = np.real(np.mean(_d_))
        Qv = np.imag(np.mean(_d_))
        return [amp, phase, Iv, Qv]

    axes_scans = gridSweep(axes)
    result_list = RunAllExp(runSweeper, axes_scans, dataset)