def _validate(self): """ Assert that this term is well-formed. This should be called exactly once, at the end of Term._init(). """ if self.dtype is NotSpecified: raise DTypeNotSpecified(termname=type(self).__name__)
def _validate_dtype(cls, passed_dtype): """ Validate a `dtype` passed to Term.__new__. If passed_dtype is NotSpecified, then we try to fall back to a class-level attribute. If a value is found at that point, we pass it to np.dtype so that users can pass `float` or `bool` and have them coerce to the appropriate numpy types. Returns ------- validated : np.dtype The dtype to use for the new term. Raises ------ DTypeNotSpecified When no dtype was passed to the instance, and the class doesn't provide a default. InvalidDType When either the class or the instance provides a value not coercible to a numpy dtype. """ dtype = passed_dtype if dtype is NotSpecified: dtype = cls.dtype if dtype is NotSpecified: raise DTypeNotSpecified(termname=cls.__name__) try: dtype = dtype_class(dtype) except TypeError: raise InvalidDType(dtype=dtype, termname=cls.__name__) return dtype
def validate_dtype(termname, dtype, missing_value): """ Validate a `dtype` and `missing_value` passed to Term.__new__. Ensures that we know how to represent ``dtype``, and that missing_value is specified for types without default missing values. Returns ------- validated_dtype, validated_missing_value : np.dtype, any The dtype and missing_value to use for the new term. Raises ------ DTypeNotSpecified When no dtype was passed to the instance, and the class doesn't provide a default. NotDType When either the class or the instance provides a value not coercible to a numpy dtype. NoDefaultMissingValue When dtype requires an explicit missing_value, but ``missing_value`` is NotSpecified. """ if dtype is NotSpecified: raise DTypeNotSpecified(termname=termname) try: dtype = dtype_class(dtype) except TypeError: raise NotDType(dtype=dtype, termname=termname) if not can_represent_dtype(dtype): raise UnsupportedDType(dtype=dtype, termname=termname) if missing_value is NotSpecified: missing_value = default_missing_value_for_dtype(dtype) try: _coerce_to_dtype(missing_value, dtype) except TypeError as e: raise TypeError( "Missing value {value!r} is not a valid choice " "for term {termname} with dtype {dtype}.\n\n" "Coercion attempt failed with: {error}".format( termname=termname, value=missing_value, dtype=dtype, error=e, ) ) return dtype, missing_value
def _validate(self): """ Assert that this term is well-formed. This should be called exactly once, at the end of Term._init(). """ if self.inputs is NotSpecified: raise TermInputsNotSpecified(termname=type(self).__name__) if self.window_length is NotSpecified: raise WindowLengthNotSpecified(termname=type(self).__name__) if self.dtype is NotSpecified: raise DTypeNotSpecified(termname=type(self).__name__) if self.mask is NotSpecified and not self.atomic: # This isn't user error, this is a bug in our code. raise AssertionError("{term} has no mask".format(term=self)) if self.window_length: for child in self.inputs: if not child.atomic: raise InputTermNotAtomic(parent=self, child=child)
def validate_dtype(termname, dtype, missing_value): """ Validate a `dtype` and `missing_value` passed to Term.__new__. Ensures that we know how to represent ``dtype``, and that missing_value is specified for types without default missing values. Returns ------- validated_dtype, validated_missing_value : np.dtype, any The dtype and missing_value to use for the new term. Raises ------ DTypeNotSpecified When no dtype was passed to the instance, and the class doesn't provide a default. NotDType When either the class or the instance provides a value not coercible to a numpy dtype. NoDefaultMissingValue When dtype requires an explicit missing_value, but ``missing_value`` is NotSpecified. """ if dtype is NotSpecified: raise DTypeNotSpecified(termname=termname) try: dtype = dtype_class(dtype) except TypeError: raise NotDType(dtype=dtype, termname=termname) if not can_represent_dtype(dtype): raise UnsupportedDType(dtype=dtype, termname=termname) if missing_value is NotSpecified: missing_value = default_missing_value_for_dtype(dtype) return dtype, missing_value
def validate_dtype(termname, dtype, missing_value): """ Validate a `dtype` and `missing_value` passed to Term.__new__. Ensures that we know how to represent ``dtype``, and that missing_value is specified for types without default missing values. Returns ------- validated_dtype, validated_missing_value : np.dtype, any The dtype and missing_value to use for the new term. Raises ------ DTypeNotSpecified When no dtype was passed to the instance, and the class doesn't provide a default. NotDType When either the class or the instance provides a value not coercible to a numpy dtype. NoDefaultMissingValue When dtype requires an explicit missing_value, but ``missing_value`` is NotSpecified. """ if dtype is NotSpecified: raise DTypeNotSpecified(termname=termname) try: dtype = dtype_class(dtype) except TypeError: raise NotDType(dtype=dtype, termname=termname) if not can_represent_dtype(dtype): raise UnsupportedDType(dtype=dtype, termname=termname) if missing_value is NotSpecified: missing_value = default_missing_value_for_dtype(dtype) try: if (dtype == categorical_dtype): # This check is necessary because we use object dtype for # categoricals, and numpy will allow us to promote numerical # values to object even though we don't support them. _assert_valid_categorical_missing_value(missing_value) # For any other type, we can check if the missing_value is safe by # making an array of that value and trying to safely convert it to # the desired type. # 'same_kind' allows casting between things like float32 and # float64, but not str and int. array([missing_value]).astype(dtype=dtype, casting='same_kind') except TypeError as e: raise TypeError( "Missing value {value!r} is not a valid choice " "for term {termname} with dtype {dtype}.\n\n" "Coercion attempt failed with: {error}".format( termname=termname, value=missing_value, dtype=dtype, error=e, ) ) return dtype, missing_value