def initialize(context):
    attach_pipeline(make_pipeline(), 'pipeline')
    #Schedule Functions
    if not IS_LIVE:
        schedule_function(
            trade,
            #date_rules.every_day(),
            #date_rules.week_end(days_offset=1),#0=Fri 1= Thurs
            date_rules.month_end(days_offset=3),
            time_rules.market_close(minutes=30)
        )
        schedule_function(record_vars, date_rules.every_day(), time_rules.market_close())
        schedule_function(cancel_open_orders, date_rules.week_end(days_offset=2), time_rules.market_close())
    
    context.spy = symbol('SPY')  #sid(8554) #SPY
    context.TF_filter = False
    #context.TF_lookback = 60
    #Set number of securities to buy and bonds fund (when we are out of stocks)
    context.Target_securities_to_buy = 15 #10 #15 #2 #1 #5 #10 #5
    
    context.bonds = symbol('IEF') #sid(23870)  #IEF
    context.relative_momentum_lookback = 44 #66 #22 #4 #22 #22 #22 #126 #Momentum lookback
    context.momentum_skip_days = 1
    context.top_n_relative_momentum_to_buy = 10 #15 #10 #15 #1 #5 #5 #10 #5 #Number to buy
    context.stock_weights = pd.Series()
    context.bond_weights = pd.Series()

    context.auto_close = {} #Initialize portfolio auto_close list.
    context.TRACK_ORDERS_ON = False
def initialize(context):
    schedule_function(func=trade,
                      date_rule=date_rules.every_day(),
                      time_rule=time_rules.market_open(),
                      half_days=True)
    schedule_function(func=cancel,
                      time_rule=time_rules.market_close(minutes=5),
                      date_rule=date_rules.every_day(),
                      half_days=True)
    schedule_function(func=reorder,
                      time_rule=time_rules.market_open(minutes=5),
                      date_rule=date_rules.every_day(),
                      half_days=True)
    context.asserts = symbols('SPY')
    context.bonds = symbol('SHY')
    context.rebalance_date = 0
    context.fired = False
    context.rebalance_inteval = 'D'  #'Q', #'D', #'M' #'Q' #'Y'
    context.top_n_by_momentum = pd.Series()
    #Choose X stocks out of portfolio of Y stocks- how many stocks to hold - top X by momentum
    context.stocks = 1
    #Lookback for momentum calculation
    context.momentum_days = 60
    #set at less than 1 to ensure no leverage
    context.leverage_buffer = 0.99
    #Set to 0 to reject any stocks with negative momentum, set to -1 to accept stocks with negative momentum
    context.trend = 0.0
    context.reorder_dict = {}
Example #3
0
def get_date_rules(freq):

    if freq == "day":

        start_rule = date_rules.every_day()
        end_rule = date_rules.every_day()

    elif freq == "week":

        start_rule = date_rules.week_start()
        end_rule = date_rules.week_end()

    elif freq == "month":

        start_rule = date_rules.month_start()
        end_rule = date_rules.month_end()

    else:

        start_rule = date_rules.every_day()
        end_rule = date_rules.every_day()

    date_rule = {"start": start_rule, "end": end_rule}
    time_rule = {
        "start": time_rules.market_open(),
        "end": time_rules.market_close()
    }

    return date_rule, time_rule
Example #4
0
def initialize(context):
    """
    Called once at the start of the algorithm.
    """

    c = context

    c.etf_universe = StaticAssets(
        symbols('XLY', 'XLP', 'XLE', 'XLF', 'XLV', 'XLI', 'XLB', 'XLK', 'XLU'))
    c.alphas = pd.DataFrame()

    # Rebalance every day, 1 hour after market open.
    schedule_function(
        rebalance,
        date_rules.every_day(),
        time_rules.market_open(hours=1),
    )

    # Record tracking variables at the end of each day.
    schedule_function(
        record_vars,
        date_rules.every_day(),
        time_rules.market_close(),
    )

    # Create our dynamic stock selector.
    attach_pipeline(make_pipeline(context), 'pipeline')
    attach_pipeline(make_pipeinit(context), 'pipeinit')

    c.first_trading_day = True
    c.factor_name_list = make_factor().keys()
Example #5
0
    def initialize(context):
        ws.send(msg_placeholder % "Simulation Start")
        context.security = symbol(ticker)
        context.model = RandomForestRegressor()
        context.trained = False

        context.lookback = 3
        context.history_range = 400

        schedule_function(create_model, date_rules.week_end(), time_rules.market_close(minutes=10))

        schedule_function(trade, date_rules.every_day(), time_rules.market_open(minutes=minutes))

        ws.send(msg_placeholder % "Execution of Training and Trading functions scheduled")
def initialize(context):
    """
    Called once at the start of the algorithm.
    """
    # Rebalance every day, 1 hour after market open.
    schedule_function(rebalance, date_rules.month_end(),
                      time_rules.market_open(hours=1))

    # Record tracking variables at the end of each day.
    schedule_function(
        record_vars,
        date_rules.every_day(),
        time_rules.market_close(),
    )

    # Create our dynamic stock selector.
    print('ATTACH PIPELINE')
    attach_pipeline(make_pipeline(), 'pipeline')
    print('PIPELINE ATTACHED')
def initialize(context):
    context.universe = StaticAssets(symbols(
        'XLY',  # Select SPDR U.S. Consumer Discretionary
        'XLP',  # Select SPDR U.S. Consumer Staples
        'XLE',  # Select SPDR U.S. Energy
        'XLF',  # Select SPDR U.S. Financials
        'XLV',  # Select SPDR U.S. Healthcare
        'XLI',  # Select SPDR U.S. Industrials
        'XLB',  # Select SPDR U.S. Materials
        'XLK',  # Select SPDR U.S. Technology
        'XLU',  # Select SPDR U.S. Utilities
    ))

    #     my_pipe = Pipeline()
    my_pipe = make_pipeline(context)

    # context.universe = StaticAssets(etfs)
    attach_pipeline(my_pipe, 'my_pipeline')

    schedule_function(func=rebalance,
                      date_rule=date_rules.month_end(days_offset=2),
                      # date_rule=date_rules.every_day(),
                      time_rule=time_rules.market_close(minutes=30))