Example #1
0
 def visitReturnStatement(self, ast: ReturnStatement):
     assert ast.function.is_function
     rt = AnnotatedTypeName(ast.function.return_type)
     if ast.expr is None:
         self.get_rhs(TupleExpr([]), rt)
     elif not isinstance(ast.expr, TupleExpr):
         ast.expr = self.get_rhs(TupleExpr([ast.expr]), rt)
     else:
         ast.expr = self.get_rhs(ast.expr, rt)
Example #2
0
    def get_rhs(self, rhs: Expression, expected_type: AnnotatedTypeName):
        if isinstance(rhs, TupleExpr):
            if not isinstance(rhs, TupleExpr) or not isinstance(
                    expected_type.type_name, TupleType) or len(
                        rhs.elements) != len(expected_type.type_name.types):
                raise TypeMismatchException(expected_type, rhs.annotated_type,
                                            rhs)
            exprs = [
                self.get_rhs(a, e)
                for e, a, in zip(expected_type.type_name.types, rhs.elements)
            ]
            return replace_expr(rhs, TupleExpr(exprs)).as_type(
                TupleType([e.annotated_type for e in exprs]))

        instance = rhs.instanceof(expected_type)
        if not instance:
            raise TypeMismatchException(expected_type, rhs.annotated_type, rhs)
        else:
            if rhs.annotated_type.type_name != expected_type.type_name:
                rhs = self.implicitly_converted_to(rhs,
                                                   expected_type.type_name)

            if instance == 'make-private':
                return self.make_private(rhs, expected_type.privacy_annotation)
            else:
                return rhs
Example #3
0
    def add_return_stmt_to_circuit(self, ast: ReturnStatement):
        self.phi.append(CircComment(ast.code()))
        assert ast.expr is not None
        if not isinstance(ast.expr, TupleExpr):
            ast.expr = TupleExpr([ast.expr])

        for vd, expr in zip(ast.function.return_var_decls, ast.expr.elements):
            # Assign return value to new version of return variable
            self.create_new_idf_version_from_value(vd.idf, expr)
Example #4
0
    def visitReturnStatement(self, ast: ReturnStatement):
        """
        Handle return statement.

        If the function requires verification, the return statement is replaced by an assignment to a return variable.
        (which will be returned at the very end of the function body, after any verification wrapper code).
        Otherwise only the expression is transformed.
        """
        if ast.function.requires_verification:
            if ast.expr is None:
                return None
            assert not self.gen.has_return_var
            self.gen.has_return_var = True
            expr = self.expr_trafo.visit(ast.expr)
            ret_args = [IdentifierExpr(vd.idf.clone()).override(target=vd) for vd in ast.function.return_var_decls]
            return TupleExpr(ret_args).assign(expr).override(pre_statements=ast.pre_statements)
        else:
            ast.expr = self.expr_trafo.visit(ast.expr)
            return ast
Example #5
0
    def inline_function_call_into_circuit(
            self, fcall: FunctionCallExpr) -> Union[Expression, TupleExpr]:
        """
        Inline an entire function call into the current circuit.

        :param fcall: Function call to inline
        :return: Expression (1 retval) / TupleExpr (multiple retvals) with return value(s)
        """
        assert isinstance(fcall.func,
                          LocationExpr) and fcall.func.target is not None
        fdef = fcall.func.target
        with self._remapper.remap_scope(fcall.func.target.body):
            with nullcontext(
            ) if fcall.func.target.idf.name == '<stmt_fct>' else self.circ_indent_block(
                    f'INLINED {fcall.code()}'):
                # Assign all arguments to temporary circuit variables which are designated as the current version of the parameter idfs
                for param, arg in zip(fdef.parameters, fcall.args):
                    self.phi.append(
                        CircComment(f'ARG {param.idf.name}: {arg.code()}'))
                    with self.circ_indent_block():
                        self.create_new_idf_version_from_value(param.idf, arg)

                # Visit the untransformed target function body to include all statements in this circuit
                inlined_body = deep_copy(fdef.original_body,
                                         with_types=True,
                                         with_analysis=True)
                self._circ_trafo.visit(inlined_body)
                fcall.statement.pre_statements += inlined_body.pre_statements

                # Create TupleExpr with location expressions corresponding to the function return values as elements
                ret_idfs = [
                    self._remapper.get_current(vd.idf)
                    for vd in fdef.return_var_decls
                ]
                ret = TupleExpr([
                    IdentifierExpr(idf.clone()).as_type(idf.t)
                    for idf in ret_idfs
                ])
        if len(ret.elements) == 1:
            # Unpack 1-length tuple
            ret = ret.elements[0]
        return ret
Example #6
0
    def evaluate_stmt_in_circuit(self, ast: Statement) -> AssignmentStatement:
        """
        Evaluate an entire statement privately.

        This works by turning the statement into an assignment statement where the

        * lhs is a tuple of all external locations (defined outside statement), which are modified inside the statement
        * rhs is the return value of an inlined function call expression to a virtual function where body = the statement + return statement \
          which returns a tuple of the most recent SSA version of all modified locations

        Note: Modifying external locations which are not owned by @me inside the statement is illegal (would leak information).
        Note: At the moment, this is only used for if statements with a private condition.

        :param ast: the statement to evaluate inside the circuit
        :return: AssignmentStatement as described above
        """
        astmt = ExpressionStatement(NumberLiteralExpr(0))
        for var in ast.modified_values:
            if var.in_scope_at(ast):
                astmt = AssignmentStatement(None, None)
                break

        astmt.before_analysis = ast.before_analysis

        # External values written inside statement -> function return values
        ret_params = []
        for var in ast.modified_values:
            if var.in_scope_at(ast):
                # side effect affects location outside statement and has privacy @me
                assert ast.before_analysis.same_partition(
                    var.privacy, Expression.me_expr())
                assert isinstance(
                    var.target,
                    (Parameter, VariableDeclaration, StateVariableDeclaration))
                t = var.target.annotated_type.zkay_type
                if not t.type_name.is_primitive_type():
                    raise NotImplementedError(
                        'Reference types inside private if statements are not supported'
                    )
                ret_t = AnnotatedTypeName(t.type_name, Expression.me_expr(),
                                          t.homomorphism)  # t, but @me
                ret_param = IdentifierExpr(var.target.idf.clone(),
                                           ret_t).override(target=var.target)
                ret_param.statement = astmt
                ret_params.append(ret_param)

        # Build the imaginary function
        fdef = ConstructorOrFunctionDefinition(
            Identifier('<stmt_fct>'), [], ['private'], [
                Parameter([], ret.annotated_type, ret.target.idf)
                for ret in ret_params
            ], Block([ast, ReturnStatement(TupleExpr(ret_params))]))
        fdef.original_body = fdef.body
        fdef.body.parent = fdef
        fdef.parent = ast

        # inline "Call" to the imaginary function
        fcall = FunctionCallExpr(
            IdentifierExpr('<stmt_fct>').override(target=fdef), [])
        fcall.statement = astmt
        ret_args = self.inline_function_call_into_circuit(fcall)

        # Move all return values out of the circuit
        if not isinstance(ret_args, TupleExpr):
            ret_args = TupleExpr([ret_args])
        for ret_arg in ret_args.elements:
            ret_arg.statement = astmt
        ret_arg_outs = [
            self._get_circuit_output_for_private_expression(
                ret_arg, Expression.me_expr(),
                ret_param.annotated_type.homomorphism)
            for ret_param, ret_arg in zip(ret_params, ret_args.elements)
        ]

        # Create assignment statement
        if ret_params:
            astmt.lhs = TupleExpr(
                [ret_param.clone() for ret_param in ret_params])
            astmt.rhs = TupleExpr(ret_arg_outs)
            return astmt
        else:
            assert isinstance(astmt, ExpressionStatement)
            return astmt
Example #7
0
    def create_external_wrapper_body(int_fct: ConstructorOrFunctionDefinition, ext_circuit: CircuitHelper,
                                     original_params: List[Parameter], requires_proof: bool) -> Block:
        """
        Return Block with external wrapper function body.

        :param int_fct: corresponding internal function
        :param ext_circuit: [SIDE EFFECT] circuit helper of the external wrapper function
        :param original_params: list of transformed function parameters without additional parameters added due to transformation
        :return: body with wrapper code
        """
        priv_args = [p for p in original_params if p.annotated_type.is_cipher()]
        args_backends = OrderedDict.fromkeys([p.annotated_type.type_name.crypto_params for p in priv_args])
        stmts = []

        for crypto_params in args_backends:
            assert crypto_params in int_fct.used_crypto_backends
            # If there are any private arguments with homomorphism 'hom', we need the public key for that crypto backend
            ext_circuit._require_public_key_for_label_at(None, Expression.me_expr(), crypto_params)
        for crypto_params in cfg.all_crypto_params():
            if crypto_params.is_symmetric_cipher():
                if (MeExpr(), crypto_params) in ext_circuit.requested_global_keys or crypto_params in args_backends:
                    # Make sure msg.sender's key pair is available in the circuit
                    stmts += ext_circuit.request_private_key(crypto_params)

        # Verify that out parameter has correct size
        stmts += [RequireStatement(IdentifierExpr(cfg.zk_out_name).dot('length').binop('==', NumberLiteralExpr(ext_circuit.out_size_trans)))]

        # IdentifierExpr for array var holding serialized public circuit inputs
        in_arr_var = IdentifierExpr(cfg.zk_in_name).as_type(Array(AnnotatedTypeName.uint_all()))

        # Request static public keys
        offset = 0
        key_req_stmts = []
        me_key_idx: Dict[CryptoParams, int] = {}
        if ext_circuit.requested_global_keys:
            # Ensure that me public key is stored starting at in[0]
            keys = [key for key in ext_circuit.requested_global_keys]

            tmp_keys = {}
            for crypto_params in int_fct.used_crypto_backends:
                tmp_key_var = Identifier(f'_tmp_key_{crypto_params.identifier_name}')
                key_req_stmts.append(tmp_key_var.decl_var(AnnotatedTypeName.key_type(crypto_params)))
                tmp_keys[crypto_params] = tmp_key_var
            for (key_owner, crypto_params) in keys:
                tmp_key_var = tmp_keys[crypto_params]
                idf, assignment = ext_circuit.request_public_key(crypto_params, key_owner, ext_circuit.get_glob_key_name(key_owner, crypto_params))
                assignment.lhs = IdentifierExpr(tmp_key_var.clone())
                key_req_stmts.append(assignment)

                # Remember me-keys for later use in symmetrically encrypted keys
                if key_owner == MeExpr():
                    assert crypto_params not in me_key_idx
                    me_key_idx[crypto_params] = offset

                # Manually add to circuit inputs
                key_len = crypto_params.key_len
                key_req_stmts.append(in_arr_var.slice(offset, key_len).assign(IdentifierExpr(tmp_key_var.clone()).slice(0, key_len)))
                offset += key_len
                assert offset == ext_circuit.in_size

        # Check encrypted parameters
        param_stmts = []
        for p in original_params:
            """ * of T_e rule 8 """
            if p.annotated_type.is_cipher():
                cipher_payload_len = p.annotated_type.type_name.crypto_params.cipher_payload_len
                assign_stmt = in_arr_var.slice(offset, cipher_payload_len).assign(IdentifierExpr(p.idf.clone()).slice(0, cipher_payload_len))
                ext_circuit.ensure_parameter_encryption(assign_stmt, p)

                # Manually add to circuit inputs
                param_stmts.append(assign_stmt)
                offset += cipher_payload_len

        # Populate sender field of parameters encrypted with a symmetric cipher
        copy_stmts = []
        for p in original_params:
            if p.annotated_type.is_cipher():
                c = p.annotated_type.type_name
                assert isinstance(c, CipherText)
                if c.crypto_params.is_symmetric_cipher():
                    sender_key = in_arr_var.index(me_key_idx[c.crypto_params])
                    idf = IdentifierExpr(p.idf.clone()).as_type(p.annotated_type.clone())
                    cipher_payload_len = cfg.get_crypto_params(p.annotated_type.homomorphism).cipher_payload_len
                    lit = ArrayLiteralExpr([idf.clone().index(i) for i in range(cipher_payload_len)] + [sender_key])
                    copy_stmts.append(VariableDeclarationStatement(VariableDeclaration([], p.annotated_type.clone(), p.idf.clone(), 'memory'), lit))
        if copy_stmts:
            param_stmts += [Comment(), Comment('Copy from calldata to memory and set sender field')] + copy_stmts

        # Declare in array
        new_in_array_expr = NewExpr(AnnotatedTypeName(TypeName.dyn_uint_array()), [NumberLiteralExpr(ext_circuit.in_size_trans)])
        in_var_decl = in_arr_var.idf.decl_var(TypeName.dyn_uint_array(), new_in_array_expr)
        stmts.append(in_var_decl)
        stmts.append(Comment())
        stmts += Comment.comment_wrap_block('Request static public keys', key_req_stmts)
        stmts += Comment.comment_wrap_block('Backup private arguments for verification', param_stmts)

        # Call internal function
        args = [IdentifierExpr(param.idf.clone()) for param in original_params]
        internal_call = FunctionCallExpr(IdentifierExpr(int_fct.idf.clone()).override(target=int_fct), args)
        internal_call.sec_start_offset = ext_circuit.priv_in_size

        if int_fct.requires_verification:
            ext_circuit.call_function(internal_call)
            args += [in_arr_var.clone(), NumberLiteralExpr(ext_circuit.in_size),
                     IdentifierExpr(cfg.zk_out_name), NumberLiteralExpr(ext_circuit.out_size)]

        if int_fct.return_parameters:
            stmts += Comment.comment_list("Declare return variables", [VariableDeclarationStatement(deep_copy(vd)) for vd in int_fct.return_var_decls])
            in_call = TupleExpr([IdentifierExpr(vd.idf.clone()) for vd in int_fct.return_var_decls]).assign(internal_call)
        else:
            in_call = ExpressionStatement(internal_call)
        stmts.append(Comment("Call internal function"))
        stmts.append(in_call)
        stmts.append(Comment())

        # Call verifier
        if requires_proof and not cfg.disable_verification:
            verifier = IdentifierExpr(cfg.get_contract_var_name(ext_circuit.verifier_contract_type.code()))
            verifier_args = [IdentifierExpr(cfg.proof_param_name), IdentifierExpr(cfg.zk_in_name), IdentifierExpr(cfg.zk_out_name)]
            verify = ExpressionStatement(verifier.call(cfg.verification_function_name, verifier_args))
            stmts.append(StatementList([Comment('Verify zk proof of execution'), verify], excluded_from_simulation=True))

        # Add return statement at the end if necessary
        if int_fct.return_parameters:
            stmts.append(ReturnStatement(TupleExpr([IdentifierExpr(vd.idf.clone()) for vd in int_fct.return_var_decls])))

        return Block(stmts)
Example #8
0
    def create_internal_verification_wrapper(self, ast: ConstructorOrFunctionDefinition):
        """
        Add the necessary additional parameters and boiler plate code for verification support to the given function.

        :param ast: [SIDE EFFECT] Internal function which requires verification
        """
        circuit = self.circuits[ast]
        stmts = []

        symmetric_cipher_used = any([backend.is_symmetric_cipher() for backend in ast.used_crypto_backends])
        if symmetric_cipher_used and 'pure' in ast.modifiers:
            # Symmetric trafo requires msg.sender access -> change from pure to view
            ast.modifiers = ['view' if mod == 'pure' else mod for mod in ast.modifiers]

        # Add additional params
        ast.add_param(Array(AnnotatedTypeName.uint_all()), cfg.zk_in_name)
        ast.add_param(AnnotatedTypeName.uint_all(), f'{cfg.zk_in_name}_start_idx')
        ast.add_param(Array(AnnotatedTypeName.uint_all()), cfg.zk_out_name)
        ast.add_param(AnnotatedTypeName.uint_all(), f'{cfg.zk_out_name}_start_idx')

        # Verify that in/out parameters have correct size
        out_start_idx, in_start_idx = IdentifierExpr(f'{cfg.zk_out_name}_start_idx'), IdentifierExpr(f'{cfg.zk_in_name}_start_idx')
        out_var, in_var = IdentifierExpr(cfg.zk_out_name), IdentifierExpr(cfg.zk_in_name).as_type(Array(AnnotatedTypeName.uint_all()))
        stmts.append(RequireStatement(out_start_idx.binop('+', NumberLiteralExpr(circuit.out_size_trans)).binop('<=', out_var.dot('length'))))
        stmts.append(RequireStatement(in_start_idx.binop('+', NumberLiteralExpr(circuit.in_size_trans)).binop('<=', in_var.dot('length'))))

        # Declare zk_data struct var (if needed)
        if circuit.requires_zk_data_struct():
            zk_struct_type = StructTypeName([Identifier(circuit.zk_data_struct_name)])
            stmts += [Identifier(cfg.zk_data_var_name).decl_var(zk_struct_type), BlankLine()]

        # Declare return variable if necessary
        if ast.return_parameters:
            stmts += Comment.comment_list("Declare return variables", [VariableDeclarationStatement(vd) for vd in ast.return_var_decls])

        # Find all me-keys in the in array
        me_key_idx: Dict[CryptoParams, int] = {}
        offset = 0
        for (key_owner, crypto_params) in circuit.requested_global_keys:
            if key_owner == MeExpr():
                assert crypto_params not in me_key_idx
                me_key_idx[crypto_params] = offset
            offset += crypto_params.key_len

        # Deserialize out array (if any)
        deserialize_stmts = []
        offset = 0
        for s in circuit.output_idfs:
            deserialize_stmts.append(s.deserialize(cfg.zk_out_name, out_start_idx, offset))
            if isinstance(s.t, CipherText) and s.t.crypto_params.is_symmetric_cipher():
                # Assign sender field to user-encrypted values if necessary
                # Assumption: s.t.crypto_params.key_len == 1 for all symmetric ciphers
                assert s.t.crypto_params in me_key_idx, "Symmetric cipher but did not request me key"
                key_idx = me_key_idx[s.t.crypto_params]
                sender_key = in_var.index(key_idx)
                cipher_payload_len = s.t.crypto_params.cipher_payload_len
                deserialize_stmts.append(s.get_loc_expr().index(cipher_payload_len).assign(sender_key))
            offset += s.t.size_in_uints
        if deserialize_stmts:
            stmts.append(StatementList(Comment.comment_wrap_block("Deserialize output values", deserialize_stmts), excluded_from_simulation=True))

        # Include original transformed function body
        stmts += ast.body.statements

        # Serialize in parameters to in array (if any)
        serialize_stmts = []
        offset = 0
        for s in circuit.input_idfs:
            serialize_stmts += [s.serialize(cfg.zk_in_name, in_start_idx, offset)]
            offset += s.t.size_in_uints
        if offset:
            stmts.append(Comment())
            stmts += Comment.comment_wrap_block('Serialize input values', serialize_stmts)

        # Add return statement at the end if necessary
        # (was previously replaced by assignment to return_var by ZkayStatementTransformer)
        if circuit.has_return_var:
            stmts.append(ReturnStatement(TupleExpr([IdentifierExpr(vd.idf.clone()).override(target=vd) for vd in ast.return_var_decls])))

        ast.body.statements[:] = stmts
Example #9
0
    def create_external_wrapper_body(int_fct: ConstructorOrFunctionDefinition,
                                     ext_circuit: CircuitHelper,
                                     original_params: List[Parameter],
                                     requires_proof: bool) -> Block:
        """
        Return Block with external wrapper function body.

        :param int_fct: corresponding internal function
        :param ext_circuit: [SIDE EFFECT] circuit helper of the external wrapper function
        :param original_params: list of transformed function parameters without additional parameters added due to transformation
        :return: body with wrapper code
        """
        has_priv_args = any(
            [p.annotated_type.is_cipher() for p in original_params])
        stmts = []

        if has_priv_args:
            ext_circuit._require_public_key_for_label_at(
                None, Expression.me_expr())
        if cfg.is_symmetric_cipher():
            # Make sure msg.sender's key pair is available in the circuit
            assert any(isinstance(k, MeExpr) for k in ext_circuit.requested_global_keys) \
                   or has_priv_args, "requires verification => both sender keys required"
            stmts += ext_circuit.request_private_key()

        # Verify that out parameter has correct size
        stmts += [
            RequireStatement(
                IdentifierExpr(cfg.zk_out_name).dot('length').binop(
                    '==', NumberLiteralExpr(ext_circuit.out_size_trans)))
        ]

        # IdentifierExpr for array var holding serialized public circuit inputs
        in_arr_var = IdentifierExpr(cfg.zk_in_name).as_type(
            Array(AnnotatedTypeName.uint_all()))

        # Find index of me's public key in requested_global_keys
        glob_me_key_index = -1
        for idx, e in enumerate(ext_circuit.requested_global_keys):
            if isinstance(e, MeExpr):
                glob_me_key_index = idx
                break

        # Request static public keys
        offset = 0
        key_req_stmts = []
        if ext_circuit.requested_global_keys:
            # Ensure that me public key is stored starting at in[0]
            keys = [key for key in ext_circuit.requested_global_keys]
            if glob_me_key_index != -1:
                (keys[0], keys[glob_me_key_index]) = (keys[glob_me_key_index],
                                                      keys[0])

            tmp_key_var = Identifier('_tmp_key')
            key_req_stmts.append(
                tmp_key_var.decl_var(AnnotatedTypeName.key_type()))
            for key_owner in keys:
                idf, assignment = ext_circuit.request_public_key(
                    key_owner, ext_circuit.get_glob_key_name(key_owner))
                assignment.lhs = IdentifierExpr(tmp_key_var.clone())
                key_req_stmts.append(assignment)

                # Manually add to circuit inputs
                key_req_stmts.append(
                    in_arr_var.slice(offset, cfg.key_len).assign(
                        IdentifierExpr(tmp_key_var.clone()).slice(
                            0, cfg.key_len)))
                offset += cfg.key_len
                assert offset == ext_circuit.in_size

        # Check encrypted parameters
        param_stmts = []
        for p in original_params:
            """ * of T_e rule 8 """
            if p.annotated_type.is_cipher():
                assign_stmt = in_arr_var.slice(
                    offset, cfg.cipher_payload_len).assign(
                        IdentifierExpr(p.idf.clone()).slice(
                            0, cfg.cipher_payload_len))
                ext_circuit.ensure_parameter_encryption(assign_stmt, p)

                # Manually add to circuit inputs
                param_stmts.append(assign_stmt)
                offset += cfg.cipher_payload_len

        if cfg.is_symmetric_cipher():
            # Populate sender field of encrypted parameters
            copy_stmts = []
            for p in original_params:
                if p.annotated_type.is_cipher():
                    sender_key = in_arr_var.index(0)
                    idf = IdentifierExpr(p.idf.clone()).as_type(
                        p.annotated_type.clone())
                    lit = ArrayLiteralExpr([
                        idf.clone().index(i)
                        for i in range(cfg.cipher_payload_len)
                    ] + [sender_key])
                    copy_stmts.append(
                        VariableDeclarationStatement(
                            VariableDeclaration([], p.annotated_type.clone(),
                                                p.idf.clone(), 'memory'), lit))
            if copy_stmts:
                param_stmts += [
                    Comment(),
                    Comment(
                        'Copy from calldata to memory and set sender field')
                ] + copy_stmts

            assert glob_me_key_index != -1, "Symmetric cipher but did not request me key"

        # Declare in array
        new_in_array_expr = NewExpr(
            AnnotatedTypeName(TypeName.dyn_uint_array()),
            [NumberLiteralExpr(ext_circuit.in_size_trans)])
        in_var_decl = in_arr_var.idf.decl_var(TypeName.dyn_uint_array(),
                                              new_in_array_expr)
        stmts.append(in_var_decl)
        stmts.append(Comment())
        stmts += Comment.comment_wrap_block('Request static public keys',
                                            key_req_stmts)
        stmts += Comment.comment_wrap_block(
            'Backup private arguments for verification', param_stmts)

        # Call internal function
        args = [IdentifierExpr(param.idf.clone()) for param in original_params]
        internal_call = FunctionCallExpr(
            IdentifierExpr(int_fct.idf.clone()).override(target=int_fct), args)
        internal_call.sec_start_offset = ext_circuit.priv_in_size

        if int_fct.requires_verification:
            ext_circuit.call_function(internal_call)
            args += [
                in_arr_var.clone(),
                NumberLiteralExpr(ext_circuit.in_size),
                IdentifierExpr(cfg.zk_out_name),
                NumberLiteralExpr(ext_circuit.out_size)
            ]

        if int_fct.return_parameters:
            stmts += Comment.comment_list("Declare return variables", [
                VariableDeclarationStatement(deep_copy(vd))
                for vd in int_fct.return_var_decls
            ])
            in_call = TupleExpr([
                IdentifierExpr(vd.idf.clone())
                for vd in int_fct.return_var_decls
            ]).assign(internal_call)
        else:
            in_call = ExpressionStatement(internal_call)
        stmts.append(Comment("Call internal function"))
        stmts.append(in_call)
        stmts.append(Comment())

        # Call verifier
        if requires_proof:
            verifier = IdentifierExpr(
                cfg.get_contract_var_name(
                    ext_circuit.verifier_contract_type.code()))
            verifier_args = [
                IdentifierExpr(cfg.proof_param_name),
                IdentifierExpr(cfg.zk_in_name),
                IdentifierExpr(cfg.zk_out_name)
            ]
            verify = ExpressionStatement(
                verifier.call(cfg.verification_function_name, verifier_args))
            stmts.append(
                StatementList(
                    [Comment('Verify zk proof of execution'), verify],
                    excluded_from_simulation=True))

        # Add return statement at the end if necessary
        if int_fct.return_parameters:
            stmts.append(
                ReturnStatement(
                    TupleExpr([
                        IdentifierExpr(vd.idf.clone())
                        for vd in int_fct.return_var_decls
                    ])))

        return Block(stmts)
Example #10
0
 def visitTupleExpr(self, ast: TupleExpr):
     ast.annotated_type = AnnotatedTypeName(
         TupleType([elem.annotated_type.clone() for elem in ast.elements]))