Example #1
0
    def from_keras(
        *,
        model_creator,
        logs_dir,
        resources_per_trial,
        name,
    ):
        """
        Create an AutoEstimator for tensorflow keras.

        :param model_creator: Tensorflow keras model creator function.
        :param logs_dir: Local directory to save logs and results.
        :param resources_per_trial: Dict. resources for each trial. e.g. {"cpu": 2}.
        :param name: Name of the auto estimator.
        :return: an AutoEstimator object.
        """
        from zoo.automl.model import ModelBuilder
        from zoo.automl.search import SearchEngineFactory
        model_builder = ModelBuilder.from_tfkeras(model_creator=model_creator)
        searcher = SearchEngineFactory.create_engine(
            backend="ray",
            logs_dir=logs_dir,
            resources_per_trial=resources_per_trial,
            name=name)
        return AutoEstimator(model_builder=model_builder, searcher=searcher)
 def test_fit_evaluate(self):
     modelBuilder_keras = ModelBuilder.from_tfkeras(model_creator_keras)
     model = modelBuilder_keras.build(config={
         "lr": 1e-2,
         "batch_size": 32,
         "metric": "mse"
     })
     val_result = model.fit_eval(x=self.data["x"],
                                 y=self.data["y"],
                                 validation_data=(self.data["val_x"], self.data["val_y"]),
                                 epochs=20)
     assert val_result is not None
Example #3
0
 def test_fit_evaluate(self):
     modelBuilder = ModelBuilder.from_pytorch(
         model_creator=model_creator_pytorch,
         optimizer_creator=optimizer_creator,
         loss_creator=loss_creator)
     model = modelBuilder.build(config={
         "lr": 1e-2,
         "batch_size": 32,
     })
     val_result = model.fit_eval(x=self.data["x"],
                                 y=self.data["y"],
                                 validation_data=(self.data["val_x"],
                                                  self.data["val_y"]),
                                 epochs=20)
     assert val_result is not None
Example #4
0
    def from_torch(
        *,
        model_creator,
        optimizer,
        loss,
        logs_dir,
        resources_per_trial,
        name,
    ):
        """
        Create an AutoEstimator for torch.

        :param model_creator: PyTorch model creator function.
        :param optimizer: PyTorch optimizer creator function or pytorch optimizer name (string).
            Note that you should specify learning rate search space with key as "lr" or LR_NAME
            (from zoo.orca.automl.pytorch_utils import LR_NAME) if input optimizer name.
            Without learning rate search space specified, the default learning rate value of 1e-3
            will be used for all estimators.
        :param loss: PyTorch loss instance or PyTorch loss creator function
            or pytorch loss name (string).
        :param logs_dir: Local directory to save logs and results.
        :param resources_per_trial: Dict. resources for each trial. e.g. {"cpu": 2}.
        :param name: Name of the auto estimator.
        :return: an AutoEstimator object.
        """
        from zoo.orca.automl.pytorch_utils import validate_pytorch_loss, \
            validate_pytorch_optim
        from zoo.automl.model import ModelBuilder
        from zoo.automl.search import SearchEngineFactory
        loss = validate_pytorch_loss(loss)
        optimizer = validate_pytorch_optim(optimizer)
        model_builder = ModelBuilder.from_pytorch(model_creator=model_creator,
                                                  optimizer_creator=optimizer,
                                                  loss_creator=loss)
        searcher = SearchEngineFactory.create_engine(
            backend="ray",
            logs_dir=logs_dir,
            resources_per_trial=resources_per_trial,
            name=name)
        return AutoEstimator(model_builder=model_builder, searcher=searcher)
Example #5
0
 def test_predict(self):
     modelBuilder = ModelBuilder.from_pytorch(
         model_creator=model_creator_pytorch,
         optimizer_creator=optimizer_creator,
         loss_creator=loss_creator)
     model = modelBuilder.build(config={
         "lr": 1e-2,
         "batch_size": 32,
     })
     model.fit_eval(x=self.data["x"],
                    y=self.data["y"],
                    validation_data=(self.data["val_x"],
                                     self.data["val_y"]),
                    epochs=20)
     pred = model.predict(x=self.data["val_x"])
     try:
         import onnx
         import onnxruntime
         pred_onnx = model.predict_with_onnx(x=self.data["val_x"])
         np.testing.assert_almost_equal(pred, pred_onnx)
     except ImportError:
         pass
def prepare_searcher(data,
                     model_creator=linear_model_creator,
                     optimizer_creator=optimizer_creator,
                     loss_creator=loss_creator,
                     feature_transformer=None,
                     recipe=SimpleRecipe(),
                     name="demo"):
    modelBuilder = ModelBuilder.from_pytorch(model_creator=model_creator,
                                             optimizer_creator=optimizer_creator,
                                             loss_creator=loss_creator)
    searcher = SearchEngineFactory.create_engine(backend="ray",
                                                 logs_dir="~/zoo_automl_logs",
                                                 resources_per_trial={"cpu": 2},
                                                 name=name)
    search_space = recipe.search_space(feature_transformer.get_feature_list())\
        if feature_transformer else None
    searcher.compile(data=data,
                     model_create_func=modelBuilder,
                     recipe=recipe,
                     feature_transformers=feature_transformer,
                     search_space=search_space)
    return searcher
Example #7
0
 def test_evaluate(self):
     modelBuilder = ModelBuilder.from_pytorch(
         model_creator=model_creator_pytorch,
         optimizer_creator=optimizer_creator,
         loss_creator=loss_creator)
     model = modelBuilder.build(config={
         "lr": 1e-2,
         "batch_size": 32,
     })
     model.fit_eval(x=self.data["x"],
                    y=self.data["y"],
                    validation_data=(self.data["val_x"],
                                     self.data["val_y"]),
                    epochs=20)
     mse_eval = model.evaluate(x=self.data["val_x"], y=self.data["val_y"])
     try:
         import onnx
         import onnxruntime
         mse_eval_onnx = model.evaluate_with_onnx(x=self.data["val_x"],
                                                  y=self.data["val_y"])
         np.testing.assert_almost_equal(mse_eval, mse_eval_onnx)
     except ImportError:
         pass
     # incremental training test
     model.fit_eval(x=self.data["x"],
                    y=self.data["y"],
                    validation_data=(self.data["val_x"],
                                     self.data["val_y"]),
                    epochs=20)
     mse_eval = model.evaluate(x=self.data["val_x"], y=self.data["val_y"])
     try:
         import onnx
         import onnxruntime
         mse_eval_onnx = model.evaluate_with_onnx(x=self.data["val_x"],
                                                  y=self.data["val_y"])
         np.testing.assert_almost_equal(mse_eval, mse_eval_onnx)
     except ImportError:
         pass
Example #8
0
    def get_linear_data(a, b, size):
        x = np.arange(0, 10, 10 / size, dtype=np.float32)
        y = a*x + b
        return x, y
    train_x, train_y = get_linear_data(2, 5, 1000)
    df = pd.DataFrame({'x': train_x, 'y': train_y})
    val_x, val_y = get_linear_data(2, 5, 400)
    val_df = pd.DataFrame({'x': val_x, 'y': val_y})
    return df, val_df


if __name__ == "__main__":
    # 1. the way to enable auto tuning model from creators.
    init_orca_context(init_ray_on_spark=True)
    modelBuilder = ModelBuilder.from_pytorch(model_creator=model_creator,
                                             optimizer_creator=optimizer_creator,
                                             loss_creator=loss_creator)

    searcher = SearchEngineFactory.create_engine(backend="ray",
                                                 logs_dir="~/zoo_automl_logs",
                                                 resources_per_trial={"cpu": 2},
                                                 name="demo")

    # pass input data, modelbuilder and recipe into searcher.compile. Note that if user doesn't pass
    # feature transformer, the default identity feature transformer will be used.
    df, val_df = get_data()
    searcher.compile(df,
                     modelBuilder,
                     recipe=SimpleRecipe(),
                     feature_cols=["x"],
                     target_col="y",
    def get_linear_data(a, b, size):
        x = np.arange(0, 10, 10 / size, dtype=np.float32)
        y = a * x + b
        return x, y

    train_x, train_y = get_linear_data(2, 5, 1000)
    val_x, val_y = get_linear_data(2, 5, 400)
    data = {'x': train_x, 'y': train_y, 'val_x': val_x, 'val_y': val_y}
    return data


if __name__ == "__main__":
    # 1. the way to enable auto tuning model from creators.
    init_orca_context(init_ray_on_spark=True)
    modelBuilder = ModelBuilder.from_pytorch(
        model_creator=model_creator,
        optimizer_creator=optimizer_creator,
        loss_creator=loss_creator)

    searcher = SearchEngineFactory.create_engine(
        backend="ray",
        logs_dir="~/zoo_automl_logs",
        resources_per_trial={"cpu": 2},
        name="demo")

    # pass input data, modelbuilder and recipe into searcher.compile. Note that if user doesn't pass
    # feature transformer, the default identity feature transformer will be used.
    data = get_data()
    searcher.compile(data=data,
                     model_create_func=modelBuilder,
                     recipe=SimpleRecipe())