Example #1
0
        if file_classes[i, 1:].max():
            train_idxs.append(i)
    train_idxs = np.asarray(train_idxs)

    steps_per_epoch = len(train_idxs) // batch_size
    validation_steps = len(val_idxs) // val_batch_size

    print('steps_per_epoch', steps_per_epoch, 'validation_steps', validation_steps)

    data_train = TrainData(train_idxs)
    val_train = ValData(val_idxs)

    train_data_loader = DataLoader(data_train, batch_size=batch_size, num_workers=6, shuffle=True, pin_memory=False, drop_last=True)
    val_data_loader = DataLoader(val_train, batch_size=val_batch_size, num_workers=6, shuffle=False, pin_memory=False)

    model = Res34_Unet_Double().cuda()

    params = model.parameters()

    optimizer = AdamW(params, lr=0.000008, weight_decay=1e-6)
    
    model, optimizer = amp.initialize(model, optimizer, opt_level="O1")

    scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[1, 2, 3, 4, 5, 7, 9, 11, 17, 23, 29, 33, 47, 50, 60, 70, 90, 110, 130, 150, 170, 180, 190], gamma=0.5)

    model = nn.DataParallel(model).cuda()

    snap_to_load = 'res34_cls2_{}_0_best'.format(seed)
    print("=> loading checkpoint '{}'".format(snap_to_load))
    checkpoint = torch.load(path.join(models_folder, snap_to_load), map_location='cpu')
    loaded_dict = checkpoint['state_dict']
    seed = int(sys.argv[1])

    pre_file = sys.argv[2]
    post_file = sys.argv[3]
    loc_pred_file = sys.argv[4]
    cls_pred_file = sys.argv[5]

    pred_folder = 'res34cls2_{}_tuned'.format(seed)
    makedirs(pred_folder, exist_ok=True)

    models = []

    snap_to_load = 'res34_cls2_{}_tuned_best'.format(seed)

    model = Res34_Unet_Double(pretrained=None)

    model = nn.DataParallel(model)

    print("=> loading checkpoint '{}'".format(snap_to_load))
    checkpoint = torch.load(path.join(models_folder, snap_to_load),
                            map_location='cpu')
    loaded_dict = checkpoint['state_dict']
    sd = model.state_dict()
    for k in model.state_dict():
        if k in loaded_dict and sd[k].size() == loaded_dict[k].size():
            sd[k] = loaded_dict[k]
    loaded_dict = sd
    model.load_state_dict(loaded_dict)
    print("loaded checkpoint '{}' (epoch {}, best_score {})".format(
        snap_to_load, checkpoint['epoch'], checkpoint['best_score']))