Example #1
0
 def _build_model(sequence_length):
     model = Sequential()
     model.add(Embedding(20, 10, input_length=sequence_length))
     model.add(Convolution1D(4, 3))
     model.add(Flatten())
     model.add(Dense(5, activation="softmax"))
     return model
Example #2
0
 def _build_mode(self):
     print("Now we build the model")
     model = Sequential()
     model.add(Convolution2D(32, 8, 8, subsample=(4, 4), border_mode='same',
                             input_shape=(IMAGE_ROWS, IMAGE_COLS, IMAGE_CHANNELS)))  # 80*80*4
     model.add(Activation('relu'))
     model.add(Convolution2D(64, 4, 4, subsample=(2, 2), border_mode='same'))
     model.add(Activation('relu'))
     model.add(Convolution2D(64, 3, 3, subsample=(1, 1), border_mode='same'))
     model.add(Activation('relu'))
     model.add(Flatten())
     model.add(Dense(512))
     model.add(Activation('relu'))
     model.add(Dense(2))
     
     # get the 1 * 2 output represent each action's probability
     model.add(Activation('softmax'))
     return model
        ImageResize(256, 256),
        ImageCenterCrop(224, 224),
        ImageChannelNormalize(123.0, 117.0, 104.0),
        ImageMatToTensor(),
        ImageFeatureToTensor()
    ])

    full_model = Net.load_bigdl(model_path)
    # create a new model by remove layers after pool5/drop_7x7_s1
    model = full_model.new_graph(["pool5/drop_7x7_s1"])
    # freeze layers from input to pool4/3x3_s2 inclusive
    model.freeze_up_to(["pool4/3x3_s2"])

    inputNode = Input(name="input", shape=(3, 224, 224))
    inception = model.to_keras()(inputNode)
    flatten = Flatten()(inception)
    logits = Dense(2)(flatten)

    lrModel = Model(inputNode, logits)

    classifier = NNClassifier(lrModel, CrossEntropyCriterion(), transformer) \
        .setLearningRate(0.003).setBatchSize(40).setMaxEpoch(1).setFeaturesCol("image")

    pipeline = Pipeline(stages=[classifier])

    catdogModel = pipeline.fit(trainingDF)
    predictionDF = catdogModel.transform(validationDF).cache()
    predictionDF.show()

    correct = predictionDF.filter("label=prediction").count()
    overall = predictionDF.count()
Example #4
0
convolve_net.add(
    Convolution2D(
        nb_filter=LAYER_2_NUM_CHANNEL,  # 通道: 8 -> 2.
        nb_row=CONVOLVE_2_KERNEL_SIZE,  # 尺寸: 12 - 5 + 1 = 8.
        nb_col=CONVOLVE_2_KERNEL_SIZE,
        activation="relu",
        W_regularizer=L2Regularizer(args.penalty_rate)))
convolve_net.add(
    AveragePooling2D(
        pool_size=(
            POOLING_2_WINDOW_SIZE,  # 尺寸: 8 / 2 = 4.
            POOLING_2_WINDOW_SIZE),
        strides=(POOLING_2_STRIDE_SIZE, POOLING_2_STRIDE_SIZE),
    ))
convolve_net.add(BatchNormalization())
convolve_net.add(Flatten())  # 尺寸: 4 * 4 * 2 -> 32
convolve_net.add(
    Dense(
        output_dim=FC_LINEAR_DIMENSION,  # 尺寸: 32 -> 64.
        activation="sigmoid",
        W_regularizer=L2Regularizer(args.penalty_rate)))
convolve_net.add(Dropout(args.dropout_rate))

# BigDL 不支持 parameter sharing, 不得已而为之.
both_feature = TimeDistributed(layer=convolve_net,
                               input_shape=input_shape)(both_input)

encode_left = both_feature.index_select(1, 0)
encode_right = both_feature.index_select(1, 1)

distance = autograd.abs(encode_left - encode_right)
Example #5
0
convolve_net.add(
    Convolution2D(
        nb_filter=LAYER_2_NUM_CHANNEL,  # 8 -> 2.
        nb_row=CONVOLVE_2_KERNEL_SIZE,  # Size: 12 - 5 + 1 = 8.
        nb_col=CONVOLVE_2_KERNEL_SIZE,
        activation="relu",
        W_regularizer=L2Regularizer(args.penalty_rate)))
convolve_net.add(
    AveragePooling2D(
        pool_size=(
            POOLING_2_WINDOW_SIZE,  # Size: 8 / 2 = 4.
            POOLING_2_WINDOW_SIZE),
        strides=(POOLING_2_STRIDE_SIZE, POOLING_2_STRIDE_SIZE),
    ))
convolve_net.add(BatchNormalization())
convolve_net.add(Flatten())  # Size: 4 * 4 * 2 -> 32
convolve_net.add(
    Dense(
        output_dim=FC_LINEAR_DIMENSION,  # Size: 32 -> 64.
        activation="sigmoid",
        W_regularizer=L2Regularizer(args.penalty_rate)))
convolve_net.add(Dropout(args.dropout_rate))

# BigDL Parameter Sharing and laying out the final model.
both_feature = TimeDistributed(layer=convolve_net,
                               input_shape=input_shape)(both_input)

encode_left = both_feature.index_select(1, 0)
encode_right = both_feature.index_select(1, 1)

distance = autograd.abs(encode_left - encode_right)