def test_auto_set(self):
     par = Parameter(budget=50)
     assert par.get_train_size() == 4 and par.get_positive_size(
     ) == 1 and par.get_negative_size() == 3
     par = Parameter(budget=100)
     assert par.get_train_size() == 6 and par.get_positive_size(
     ) == 1 and par.get_negative_size() == 5
     par = Parameter(budget=1000)
     assert par.get_train_size() == 12 and par.get_positive_size(
     ) == 2 and par.get_negative_size() == 10
     par = Parameter(budget=1001)
     assert par.get_train_size() == 22 and par.get_positive_size(
     ) == 2 and par.get_negative_size() == 20
Example #2
0
def minimize_sphere_mixed():
    """
    Mixed optimization example of minimizing sphere function, which has mixed search search space.

    :return: no return value
    """

    # setup optimization problem
    dim_size = 100
    dim_regs = []
    dim_tys = []
    # In this example, the search space is discrete if this dimension index is odd, Otherwise, the search space
    # is continuous.
    for i in range(dim_size):
        if i % 2 == 0:
            dim_regs.append([0, 1])
            dim_tys.append(True)
        else:
            dim_regs.append([0, 100])
            dim_tys.append(False)
    dim = Dimension(dim_size, dim_regs, dim_tys)
    objective = Objective(sphere_mixed, dim)  # form up the objective function
    budget = 100 * dim_size  # number of calls to the objective function
    parameter = Parameter(budget=budget)

    solution_list = ExpOpt.min(objective, parameter, repeat=1, plot=True, plot_file="img/sphere_mixed_figure.png")
Example #3
0
def minimize_ackley_continuous_noisy():
    """
    SSRacos example of minimizing ackley function under Gaussian noise

    :return: no return value
    """
    ackley_noise_func = ackley_noise_creator(0, 0.1)
    dim_size = 100  # dimensions
    dim_regs = [[-1, 1]] * dim_size  # dimension range
    dim_tys = [True] * dim_size  # dimension type : real
    dim = Dimension(dim_size, dim_regs,
                    dim_tys)  # form up the dimension object
    objective = Objective(ackley_noise_func,
                          dim)  # form up the objective function
    budget = 20000  # 20*dim_size  # number of calls to the objective function
    # suppression=True means optimize with value suppression, which is a noise handling method
    # resampling=True means optimize with re-sampling, which is another common used noise handling method
    # non_update_allowed=500 and resample_times=100 means if the best solution doesn't change for 500 budgets,
    # the best solution will be evaluated repeatedly for 100 times
    # balance_rate is a parameter for exponential weight average of several evaluations of one sample.
    parameter = Parameter(budget=budget,
                          noise_handling=True,
                          suppression=True,
                          non_update_allowed=200,
                          resample_times=50,
                          balance_rate=0.5)

    # parameter = Parameter(budget=budget, noise_handling=True, resampling=True, resample_times=10)
    parameter.set_positive_size(5)

    ExpOpt.min(objective,
               parameter,
               repeat=5,
               plot=False,
               plot_file="img/ackley_continuous_noisy_figure.png")
def run_test_handlingnoise(task_name, layers, in_budget, max_step, repeat, terminal_value):
    """
    example of running direct policy search for gym task with noise handling.

    :param task_name: gym task name
    :param layers:
        layer information of the neural network
        e.g., [2, 5, 1] means input layer has 2 neurons, hidden layer(only one) has 5 and output layer has 1
    :param in_budget:  number of calls to the objective function
    :param max_step: max step in gym
    :param repeat:  number of repeatitions for noise handling
    :param terminal_value: early stop, algorithm should stop when such value is reached
    :return: no return value
    """
    gym_task = GymTask(task_name)  # choose a task by name
    gym_task.new_nnmodel(layers)  # construct a neural network
    gym_task.set_max_step(max_step)  # set max step in gym

    budget = in_budget  # number of calls to the objective function
    rand_probability = 0.95  # the probability of sample in model

    # set dimension
    dim_size = gym_task.get_w_size()
    dim_regs = [[-10, 10]] * dim_size
    dim_tys = [True] * dim_size
    dim = Dimension(dim_size, dim_regs, dim_tys)
    # form up the objective function
    objective = Objective(gym_task.sum_reward, dim)
    # by default, the algorithm is sequential RACOS
    parameter = Parameter(budget=budget, autoset=True,
                          suppression=True, terminal_value=terminal_value)
    parameter.set_resample_times(70)
    parameter.set_probability(rand_probability)

    solution_list = ExpOpt.min(objective, parameter, repeat=repeat)
Example #5
0
 def test_sracos_performance(self):
     dim = 100  # dimension
     objective = Objective(ackley,
                           Dimension(dim, [[-1, 1]] * dim,
                                     [True] * dim))  # setup objective
     parameter = Parameter(budget=100 * dim)
     solution = Opt.min(objective, parameter)
     assert solution.get_value() < 0.2
    def test_performance(self):
        mse = SparseMSE('example/sparse_regression/sonar.arff')
        mse.set_sparsity(8)

        # setup objective
        # print(mse.get_dim().get_size())
        objective = Objective(func=mse.loss, dim=mse.get_dim(), constraint=mse.constraint)
        parameter = Parameter(algorithm='poss',
                              budget=2 * exp(1) * (mse.get_sparsity() ** 2) * mse.get_dim().get_size())

        # perform sparse regression with constraint |w|_0 <= k
        solution = Opt.min(objective, parameter)
        assert solution.get_value()[0] < 0.6
def minimize_sphere_sre():
    """
    Example of minimizing high-dimensional sphere function with sequential random embedding.

    :return: no return value
    """

    dim_size = 10000  # dimensions
    dim_regs = [[-1, 1]] * dim_size  # dimension range
    dim_tys = [True] * dim_size  # dimension type : real
    dim = Dimension(dim_size, dim_regs, dim_tys)  # form up the dimension object
    objective = Objective(sphere_sre, dim)  # form up the objective function

    # setup algorithm parameters
    budget = 2000  # number of calls to the objective function
    parameter = Parameter(budget=budget, high_dim_handling=True, reducedim=True, num_sre=5,
                          low_dimension=Dimension(10, [[-1, 1]] * 10, [True] * 10))
    solution_list = ExpOpt.min(objective, parameter, repeat=5, plot=False, plot_file="img/minimize_sphere_sre.png")
Example #8
0
    def test_performance(self):
        dim_size = 10000  # dimensions
        dim_regs = [[-1, 1]] * dim_size  # dimension range
        dim_tys = [True] * dim_size  # dimension type : real
        dim = Dimension(dim_size, dim_regs,
                        dim_tys)  # form up the dimension object
        objective = Objective(sphere_sre,
                              dim)  # form up the objective function

        # setup algorithm parameters
        budget = 2000  # number of calls to the objective function
        parameter = Parameter(budget=budget,
                              high_dim_handling=True,
                              reducedim=True,
                              num_sre=5,
                              low_dimension=Dimension(10, [[-1, 1]] * 10,
                                                      [True] * 10))
        solution = Opt.min(objective, parameter)
        assert solution.get_value() < 0.3
    def test_resample(self):
        ackley_noise_func = ackley_noise_creator(0, 0.1)
        dim_size = 100  # dimensions
        dim_regs = [[-1, 1]] * dim_size  # dimension range
        dim_tys = [True] * dim_size  # dimension type : real
        dim = Dimension(dim_size, dim_regs, dim_tys)  # form up the dimension object
        objective = Objective(ackley_noise_func, dim)  # form up the objective function
        budget = 20000  # 20*dim_size  # number of calls to the objective function
        # suppression=True means optimize with value suppression, which is a noise handling method
        # resampling=True means optimize with re-sampling, which is another common used noise handling method
        # non_update_allowed=500 and resample_times=100 means if the best solution doesn't change for 500 budgets,
        # the best solution will be evaluated repeatedly for 100 times
        # balance_rate is a parameter for exponential weight average of several evaluations of one sample.
        parameter = Parameter(budget=budget, noise_handling=True, resampling=True, resample_times=10)

        # parameter = Parameter(budget=budget, noise_handling=True, resampling=True, resample_times=10)
        parameter.set_positive_size(5)

        sol = Opt.min(objective, parameter)
        assert sol.get_value() < 4
def minimize_sphere_continuous():
    """
    Example of minimizing the sphere function

    :return: no return value
    """
    dim_size = 100
    # form up the objective function
    objective = Objective(
        sphere, Dimension(dim_size, [[-1, 1]] * dim_size, [True] * dim_size))

    budget = 100 * dim_size
    # if intermediate_result is True, ZOOpt will output intermediate best solution every intermediate_freq budget
    parameter = Parameter(budget=budget,
                          intermediate_result=True,
                          intermediate_freq=1000)
    ExpOpt.min(objective,
               parameter,
               repeat=1,
               plot=True,
               plot_file="img/sphere_continuous_figure.png")
def minimize_ackley_continuous():
    """
    Continuous optimization example of minimizing the ackley function.

    :return: no return value
    """
    dim_size = 100  # dimensions
    dim_regs = [[-1, 1]] * dim_size  # dimension range
    dim_tys = [True] * dim_size  # dimension type : real
    dim = Dimension(dim_size, dim_regs,
                    dim_tys)  # form up the dimension object

    objective = Objective(ackley, dim)  # form up the objective function

    budget = 100 * dim_size  # number of calls to the objective function
    parameter = Parameter(budget=budget)

    solution_list = ExpOpt.min(objective,
                               parameter,
                               repeat=1,
                               plot=True,
                               plot_file="img/ackley_continuous_figure.png")
Example #12
0
    def test_performance(self):
        # load data file
        mse = SparseMSE('example/sparse_regression/sonar.arff')
        mse.set_sparsity(8)

        # setup objective
        objective = Objective(func=mse.loss,
                              dim=mse.get_dim(),
                              constraint=mse.constraint)
        # ponss_theta and ponss_b are parameters used in PONSS algorithm and should be provided by users. ponss_theta stands
        # for the threshold. ponss_b limits the number of solutions in the population set.
        parameter = Parameter(algorithm='poss',
                              noise_handling=True,
                              ponss=True,
                              ponss_theta=0.5,
                              ponss_b=mse.get_k(),
                              budget=2 * exp(1) * (mse.get_sparsity()**2) *
                              mse.get_dim().get_size())

        # perform sparse regression with constraint |w|_0 <= k
        solution = Opt.min(objective, parameter)
        assert solution.get_value()[0] < 0.7
Example #13
0
def minimize_setcover_discrete():
    """
    Discrete optimization example of minimizing setcover problem.

    :return: no return value
    """
    problem = SetCover()
    dim = problem.dim  # the dim is prepared by the class
    objective = Objective(problem.fx, dim)  # form up the objective function
    budget = 100 * dim.get_size()  # number of calls to the objective function
    # if autoset is False, you should define train_size, positive_size, negative_size on your own
    parameter = Parameter(budget=budget, autoset=False)
    parameter.set_train_size(6)
    parameter.set_positive_size(1)
    parameter.set_negative_size(5)

    ExpOpt.min(objective,
               parameter,
               repeat=10,
               best_n=5,
               plot=True,
               plot_file="img/setcover_discrete_figure.png")
Example #14
0
def minimize_sphere_discrete_order():
    """
    Discrete optimization example of minimizing the sphere function, which has ordered search space.

    :return: no return value
    """
    dim_size = 100  # dimensions
    dim_regs = [[-10, 10]] * dim_size  # dimension range
    dim_tys = [False] * dim_size  # dimension type : integer
    dim_order = [True] * dim_size
    dim = Dimension(dim_size, dim_regs, dim_tys,
                    order=dim_order)  # form up the dimension object
    objective = Objective(sphere_discrete_order,
                          dim)  # form up the objective function

    # setup algorithm parameters
    budget = 10000  # number of calls to the objective function
    parameter = Parameter(budget=budget)

    ExpOpt.min(objective,
               parameter,
               repeat=1,
               plot=True,
               plot_file="img/sphere_discrete_order_figure.png")
Example #15
0
"""
An example of using PONSS to optimize a noisy subset selection problem.
"""

from zoopt.example.sparse_regression.sparse_mse import SparseMSE
from zoopt.zoopt import Objective, Parameter, ExpOpt
from math import exp

if __name__ == '__main__':
    # load data file
    mse = SparseMSE('sonar.arff')
    mse.set_sparsity(8)

    # setup objective
    objective = Objective(func=mse.loss,
                          dim=mse.get_dim(),
                          constraint=mse.constraint)
    # ponss_theta and ponss_b are parameters used in PONSS algorithm and should be provided by users. ponss_theta stands
    # for the threshold. ponss_b limits the number of solutions in the population set.
    parameter = Parameter(algorithm='poss',
                          noise_handling=True,
                          ponss=True,
                          ponss_theta=0.5,
                          ponss_b=mse.get_k(),
                          budget=2 * exp(1) * (mse.get_sparsity()**2) *
                          mse.get_dim().get_size())

    # perform sparse regression with constraint |w|_0 <= k
    solution_list = ExpOpt.min(objective, parameter, repeat=1, plot=True)
        """
        Training error.
        """
        wrong = 0.0
        for i in range(len(self.__data)):
            fx = self.calc_product(best, i)
            if fx * self.trans_label(i) <= 0:
                wrong += 1
        rate = wrong / len(self.__data)
        return rate

    def dim(self):
        """
        Construct dimension of this problem.
        """
        return Dimension(self.__dim_size, [[-10, 10]] * self.__dim_size,
                         [True] * self.__dim_size)


if __name__ == '__main__':
    # read data
    loss = RampLoss('ionosphere.arff')
    objective = Objective(loss.eval, loss.dim())
    budget = 100 * loss.get_dim_size()
    parameter = Parameter(budget=budget)
    solution_list = ExpOpt.min(objective,
                               parameter,
                               repeat=1,
                               plot=True,
                               plot_file="img/ramploss.png")
"""
This file contains an example of how to optimize continuous ackley function.

Author:
    Yu-Ren Liu, Xiong-Hui Chen
"""

from zoopt.zoopt import Dimension, Objective, Parameter, ExpOpt, Solution
from zoopt.example.simple_functions.simple_function import ackley

if __name__ == '__main__':
    dim = 100  # dimension
    objective = Objective(ackley, Dimension(dim, [[-1, 1]] * dim, [True] * dim))  # setup objective
    parameter = Parameter(budget=100 * dim, init_samples=[Solution([0] * 100)])  # init with init_samples
    solution_list = ExpOpt.min(objective, parameter, repeat=5, plot=False, plot_file="img/quick_start.png")
    for solution in solution_list:
        x = solution.get_x()
        value = solution.get_value()
        print(x, value)
 def test_parameter_set(self):
     par = Parameter(budget=1000, noise_handling=True, suppression=True)
     assert 1
Example #19
0
"""
An example of using POSS to optimize a subset selection problem.
"""
from zoopt.example.sparse_regression.sparse_mse import SparseMSE
from zoopt.zoopt import Objective, Parameter, ExpOpt
from math import exp

if __name__ == '__main__':
    # load data file
    mse = SparseMSE('sonar.arff')
    mse.set_sparsity(8)

    # setup objective
    # print(mse.get_dim().get_size())
    objective = Objective(func=mse.loss,
                          dim=mse.get_dim(),
                          constraint=mse.constraint)
    parameter = Parameter(algorithm='poss',
                          budget=2 * exp(1) * (mse.get_sparsity()**2) *
                          mse.get_dim().get_size())

    # perform sparse regression with constraint |w|_0 <= k
    solution_list = ExpOpt.min(objective, parameter, repeat=1, plot=True)