def test_convert_array_type_list_to_np_array(self): """Test convert_array_type converts a list to a np.ndarray.""" test_scaler = scale.Scaler([1, 2, 3]) output = test_scaler.convert_array_type([1, 2, 3], np.ndarray) assert isinstance(output, np.ndarray)
def test_convert_array_type_list_to_pd_series(self): """Test convert_array_type converts a list to a pd.Series""" test_scaler = scale.Scaler([1, 2, 3]) output = test_scaler.convert_array_type([1, 2, 3], pd.Series) assert isinstance(output, pd.Series)
def test_convert_array_type_pd_Series_to_list(self): """Test convert_array_type converts a pd.Series to a list.""" test_scaler = scale.Scaler([1, 2, 3]) output = test_scaler.convert_array_type(pd.Series([1, 2, 3]), list) assert isinstance(output, list)
def test_min_max_values_2(self): """Test the min_max values are correct, with negatives.""" test_scaler = scale.Scaler([-2, -5, 10, 3]) test_scaler.get_min_max_values() assert test_scaler.min_max_val == (-5, 10)
def test_min_max_values_3(self): """Test the min_max values are correct, with length 1.""" test_scaler = scale.Scaler([3]) test_scaler.get_min_max_values() assert test_scaler.min_max_val == (3, 3)
def test_min_max_val_attribute(self): """Test min_max_val attribute is assigned.""" test_scaler = scale.Scaler([3, 2, 5, 4]) test_scaler.get_min_max_values() assert hasattr(test_scaler, "min_max_val")
def test_min_max_values_1(self): """Test the min_max values are correct.""" test_scaler = scale.Scaler([1, 2, 3, 4]) test_scaler.get_min_max_values() assert test_scaler.min_max_val == (1, 4)
def test_array_like_value(self): """Test array_like attribute assigned correctly.""" test_scaler = scale.Scaler([1, 2, 3]) assert test_scaler.array_like == [1, 2, 3]
def test_has_attr_array_like(self): """Test initialised Scaler object has array_like attribute.""" test_scaler = scale.Scaler([1, 2, 3]) assert hasattr(test_scaler, "array_like")
def test_error_thrown_with_nan(self): """Test error is thrown if array_like contains missing values.""" with pytest.raises(ValueError): scale.Scaler(array_like=[1, 2, np.NaN])
def test_array_like_value_type(self): """Test error is thrown if array_like values are not the correct type.""" with pytest.raises(TypeError): scale.Scaler(array_like=[1, 2, "dummy"])
def test_array_like_type(self): """Test error is thrown if array_like is not the correct type.""" with pytest.raises(TypeError): scale.Scaler(array_like=123)