def test_ansatz_circuit_three_layers(self, n_qubits, topology):
        # Given
        number_of_layers = 3
        ansatz = QCBMAnsatz(
            number_of_layers=number_of_layers,
            number_of_qubits=n_qubits,
            topology=topology,
        )
        params = [
            np.random.rand(2 * n_qubits),
            np.random.rand(int((n_qubits * (n_qubits - 1)) / 2)),
            np.random.rand(2 * n_qubits),
        ]
        expected_circuit = Circuit([
            # First layer
            *[RX(params[0][i])(i) for i in range(n_qubits)],
            *[RZ(params[0][i + n_qubits])(i) for i in range(n_qubits)],
            # Second layer
            *get_entangling_layer(params[1], n_qubits, XX,
                                  topology).operations,
            # Third layer
            *[RZ(params[2][i])(i) for i in range(n_qubits)],
            *[RX(params[2][i + n_qubits])(i) for i in range(n_qubits)],
        ])

        params = np.concatenate(params)

        # When
        circuit = ansatz.get_executable_circuit(params)

        # Then
        assert circuit == expected_circuit
 def target_unitary(self, beta, gamma, symbols_map):
     target_circuit = Circuit()
     target_circuit += H(0)
     target_circuit += H(1)
     target_circuit += RZ(2 * gamma)(0)
     target_circuit += RZ(2 * gamma)(1)
     target_circuit += RX(2 * beta)(0)
     target_circuit += RX(2 * beta)(1)
     return target_circuit.bind(symbols_map).to_unitary()
Example #3
0
def time_evolution_for_term(
        term: QubitOperator, time: Union[float,
                                         sympy.Expr]) -> circuits.Circuit:
    """Evolves a Pauli term for a given time and returns a circuit representing it.
    Based on section 4 from https://arxiv.org/abs/1001.3855 .
    Args:
        term: Pauli term to be evolved
        time: time of evolution
    Returns:
        Circuit: Circuit representing evolved term.
    """

    if len(term.terms) != 1:
        raise ValueError("This function works only on a single term.")
    term_components = list(term.terms.keys())[0]
    base_changes = []
    base_reversals = []
    cnot_gates = []
    central_gate = None
    term_types = [component[1] for component in term_components]
    qubit_indices = [component[0] for component in term_components]
    coefficient = list(term.terms.values())[0]

    circuit = circuits.Circuit()

    # If constant term, return empty circuit.
    if not term_components:
        return circuit

    for i, (term_type, qubit_id) in enumerate(zip(term_types, qubit_indices)):
        if term_type == "X":
            base_changes.append(H(qubit_id))
            base_reversals.append(H(qubit_id))
        elif term_type == "Y":
            base_changes.append(RX(np.pi / 2)(qubit_id))
            base_reversals.append(RX(-np.pi / 2)(qubit_id))
        if i == len(term_components) - 1:
            central_gate = RZ(2 * time * coefficient)(qubit_id)
        else:
            cnot_gates.append(CNOT(qubit_id, qubit_indices[i + 1]))

    for gate in base_changes:
        circuit += gate

    for gate in cnot_gates:
        circuit += gate

    circuit += central_gate

    for gate in reversed(cnot_gates):
        circuit += gate

    for gate in base_reversals:
        circuit += gate

    return circuit
Example #4
0
    def circuits(self):
        circuits = [Circuit() for _ in range(5)]

        circuits[1] += RX(1.2)(0)
        circuits[1] += RY(1.5)(1)
        circuits[1] += RX(-0.0002)(0)
        circuits[1] += RY(0)(1)

        for circuit in circuits[2:]:
            circuit += RX(sympy.Symbol("theta_0"))(0)
            circuit += RY(sympy.Symbol("theta_1"))(1)
            circuit += RX(sympy.Symbol("theta_2"))(0)
            circuit += RY(sympy.Symbol("theta_3"))(1)

        return circuits
def _validate_expectation_value_includes_coefficients(
    estimator: EstimateExpectationValues, ):
    estimation_tasks = [
        EstimationTask(IsingOperator("Z0"), Circuit([RX(np.pi / 3)(0)]),
                       10000),
        EstimationTask(IsingOperator("Z0", 19.971997),
                       Circuit([RX(np.pi / 3)(0)]), 10000),
    ]

    expectation_values = estimator(
        backend=_backend,
        estimation_tasks=estimation_tasks,
    )

    return not np.array_equal(expectation_values[0].values,
                              expectation_values[1].values)
    def _build_rotational_subcircuit(self, circuit: Circuit,
                                     parameters: np.ndarray) -> Circuit:
        """Add the subcircuit which includes several rotation gates acting on each qubit

        Args:
            circuit: The circuit to append to
            parameters: The variational parameters (or symbolic parameters)

        Returns:
            circuit with added rotational sub-layer
        """
        # Add RZ(theta) RX(pi/2) RZ(theta') RX(pi/2) RZ(theta'')
        for qubit_index in range(self.number_of_qubits):

            qubit_parameters = parameters[qubit_index * 3:(qubit_index + 1) *
                                          3]

            circuit += RZ(qubit_parameters[0])(qubit_index)
            circuit += RX(np.pi / 2)(qubit_index)
            circuit += RZ(qubit_parameters[1])(qubit_index)
            circuit += RX(np.pi / 2)(qubit_index)
            circuit += RZ(qubit_parameters[2])(qubit_index)

        return circuit
Example #7
0
    def test_commutes_with_parameter_substitution(self):
        theta, gamma = sympy.symbols("theta, gamma")
        circuit = Circuit([
            RX(theta / 2)(0),
            X(1),
            RY(gamma / 4).controlled(1)(1, 2),
            YY(0.1)(0, 4)
        ])

        symbols_map = {theta: 0.1, gamma: 0.5}
        parameterized_unitary = circuit.to_unitary()
        unitary = circuit.bind(symbols_map).to_unitary()

        np.testing.assert_array_almost_equal(
            np.array(parameterized_unitary.subs(symbols_map), dtype=complex),
            unitary)
    def test_ansatz_circuit_one_layer(self, n_qubits, topology):
        # Given
        number_of_layers = 1
        ansatz = QCBMAnsatz(
            number_of_layers=number_of_layers,
            number_of_qubits=n_qubits,
            topology=topology,
        )

        params = [np.random.rand(n_qubits)]

        expected_circuit = Circuit()
        for i in range(n_qubits):
            expected_circuit += RX(params[0][i])(i)

        params = np.concatenate(params)

        # When
        circuit = ansatz.get_executable_circuit(params)

        # Then
        assert circuit == expected_circuit
Example #9
0
    def test_perform_context_selection(self):
        target_operators = []
        target_operators.append(10.0 * QubitOperator("Z0"))
        target_operators.append(-3 * QubitOperator("Y0"))
        target_operators.append(1 * QubitOperator("X0"))
        target_operators.append(20 * QubitOperator(""))

        expected_operators = []
        expected_operators.append(10.0 * QubitOperator("Z0"))
        expected_operators.append(-3 * QubitOperator("Z0"))
        expected_operators.append(1 * QubitOperator("Z0"))
        expected_operators.append(20 * QubitOperator(""))

        base_circuit = Circuit([X(0)])
        x_term_circuit = Circuit([RY(-np.pi / 2)(0)])
        y_term_circuit = Circuit([RX(np.pi / 2)(0)])

        expected_circuits = [
            base_circuit,
            base_circuit + y_term_circuit,
            base_circuit + x_term_circuit,
            base_circuit,
        ]

        estimation_tasks = [
            EstimationTask(operator, base_circuit, None)
            for operator in target_operators
        ]

        tasks_with_context_selection = perform_context_selection(
            estimation_tasks)

        for task, expected_circuit, expected_operator in zip(
                tasks_with_context_selection, expected_circuits,
                expected_operators):
            assert task.operator.terms == expected_operator.terms
            assert task.circuit == expected_circuit
Example #10
0
class TestCreatingUnitaryFromCircuit:
    @pytest.fixture
    def cirq_unitaries(self):
        """
        Note: We decided to go with file-based approach after extracting cirq
        from z-quantum-core and not being able to use `export_to_cirq` anymore.
        """
        path_to_array = ("/".join(__file__.split("/")[:-1]) +
                         "/hardcoded_cirq_unitaries.npy")
        return np.load(path_to_array, allow_pickle=True)

    @pytest.mark.parametrize(
        "circuit, unitary_index",
        [
            # Identity gates in some test cases below are used so that comparable
            # Cirq circuits have the same number of qubits as Zquantum ones.
            (Circuit([RX(np.pi / 5)(0)]), 0),
            (Circuit([RY(np.pi / 2)(0), RX(np.pi / 5)(0)]), 1),
            (
                Circuit(
                    [I(1),
                     I(2),
                     I(3),
                     I(4),
                     RX(np.pi / 5)(0),
                     XX(0.1)(5, 0)]),
                2,
            ),
            (
                Circuit([
                    XY(np.pi).controlled(1)(3, 1, 4),
                    RZ(0.1 * np.pi).controlled(2)(0, 2, 1),
                ]),
                3,
            ),
            (
                Circuit(
                    [H(1),
                     YY(0.1).controlled(1)(0, 1, 2),
                     X(2),
                     Y(3),
                     Z(4)]),
                4,
            ),
        ],
    )
    def test_without_free_params_gives_the_same_result_as_cirq(
            self, circuit, unitary_index, cirq_unitaries):
        zquantum_unitary = circuit.to_unitary()

        assert isinstance(
            zquantum_unitary, np.ndarray
        ), "Unitary constructed from non-parameterized circuit is not a numpy array."

        np.testing.assert_array_almost_equal(zquantum_unitary,
                                             cirq_unitaries[unitary_index])

    def test_commutes_with_parameter_substitution(self):
        theta, gamma = sympy.symbols("theta, gamma")
        circuit = Circuit([
            RX(theta / 2)(0),
            X(1),
            RY(gamma / 4).controlled(1)(1, 2),
            YY(0.1)(0, 4)
        ])

        symbols_map = {theta: 0.1, gamma: 0.5}
        parameterized_unitary = circuit.to_unitary()
        unitary = circuit.bind(symbols_map).to_unitary()

        np.testing.assert_array_almost_equal(
            np.array(parameterized_unitary.subs(symbols_map), dtype=complex),
            unitary)
import numpy as np
from openfermion import IsingOperator
from zquantum.core.circuits import RX, RY, RZ, Circuit, H
from zquantum.core.interfaces.estimation import (
    EstimateExpectationValues,
    EstimationTask,
)
from zquantum.core.symbolic_simulator import SymbolicSimulator

_backend = SymbolicSimulator(seed=1997)

_estimation_tasks = [
    EstimationTask(IsingOperator("Z0"), Circuit([H(0)]), 10000),
    EstimationTask(
        IsingOperator("Z0") + IsingOperator("Z1") + IsingOperator("Z2"),
        Circuit([H(0), RX(np.pi / 3)(0), H(2)]),
        10000,
    ),
    EstimationTask(
        IsingOperator("Z0") + IsingOperator("Z1", 4),
        Circuit([
            RX(np.pi)(0),
            RY(0.12)(1),
            RZ(np.pi / 3)(1),
            RY(1.9213)(0),
        ]),
        10000,
    ),
]

def test_by_default_only_gate_operations_are_supported():
    simulator = SymbolicSimulatorWithDefaultSetOfSupportedOperations()
    assert simulator.is_natively_supported(RX(np.pi / 2)(1))
    assert not simulator.is_natively_supported(
        MultiPhaseOperation((0.5, 0.2, 0.3, 0.1)))
class SymbolicSimulatorWithNonSupportedOperations(SymbolicSimulator):
    def is_natively_supported(self, operation: Operation) -> bool:
        return super().is_natively_supported(
            operation) and operation.gate.name != "RX"


class SymbolicSimulatorWithDefaultSetOfSupportedOperations(SymbolicSimulator):
    def is_natively_supported(self, operation: Operation) -> bool:
        return QuantumSimulator.is_natively_supported(self, operation)


@pytest.mark.parametrize(
    "circuit",
    [
        Circuit([RY(0.5)(0), RX(1)(1),
                 CNOT(0, 2), RX(np.pi)(2)]),
        Circuit([RX(1)(1), CNOT(0, 2),
                 RX(np.pi)(2), RY(0.5)(0)]),
        Circuit([RX(1)(1),
                 CNOT(0, 2),
                 RX(np.pi)(2),
                 RY(0.5)(0),
                 RX(0.5)(0)]),
    ],
)
def test_quantum_simulator_switches_between_native_and_nonnative_modes_of_execution(
    circuit, ):
    simulator = SymbolicSimulatorWithNonSupportedOperations()
    reference_simulator = SymbolicSimulator()