Exemple #1
0
    def selectPlayers(self):
        if self.playerBlack == 2:
            self.agentBlack = ag.RandomAgent(2)
        elif self.playerBlack == 3:
            self.agentBlack = ag.RulesAgent(2)
        elif self.playerBlack == 4:
            self.agentBlack = ag.RulesPriorityAgent(2)
        elif self.playerBlack == 5:
            self.agentBlack = ag.UnionRulesAgent(2)
        elif self.playerBlack == 6:
            self.agentBlack = ag.AlphaBetaAgent(2, 4, self.evaluator1)
        elif self.playerBlack == 7:
            self.agentBlack = ag.MinimaxAgent(2, 5, self.evaluator1)
        elif self.playerBlack == 8:
            self.agentBlack = ag.MonteCarloAgent(2, 60)

        if self.playerWhite == 2:
            self.agentWhite = ag.RandomAgent(1)
        elif self.playerWhite == 3:
            self.agentWhite = ag.RulesPriorityAgent(1)
        elif self.playerWhite == 4:
            self.agentWhite = ag.RulesPriorityAgent(1)
        elif self.playerWhite == 5:
            self.agentWhite = ag.RulesPriorityAgent(1)
        elif self.playerWhite == 6:
            self.agentWhite = ag.AlphaBetaAgent(1, 4, self.evaluator2)
        elif self.playerWhite == 7:
            self.agentWhite = ag.MinimaxAgent(1, 5, self.evaluator2)
        elif self.playerWhite == 8:
            self.agentWhite = ag.MonteCarloAgent(1, 60)
Exemple #2
0
    def getFitness(self, matrix):
        ev1_1 = ev.Evaluator(1, matrix)
        ev2_1 = ev.Evaluator(2)
        ag1_1 = ag.AlphaBetaAgent(1, 2, ev1_1)
        ag2_1 = ag.AlphaBetaAgent(2, 2, ev2_1)
        result1, game1 = self.simulateGame(ag1_1, ag2_1)

        white, black = game1.countColors()

        if black == 0:
            fitness1 = 64
        elif white == 0:
            fitness1 = -64
        else:
            fitness1 = white - black

        ev1_2 = ev.Evaluator(1, matrix)
        ev2_2 = ev.Evaluator(2)
        ag2_2 = ag.AlphaBetaAgent(1, 2, ev2_2)
        ag1_2 = ag.AlphaBetaAgent(2, 2, ev1_2)
        result2, game2 = self.simulateGame(ag2_2, ag1_2)

        white, black = game2.countColors()

        if black == 0:
            fitness2 = -64
        elif white == 0:
            fitness2 = 64
        else:
            fitness2 = black - white

        fitness = (fitness1 + fitness2)
        return fitness
Exemple #3
0
def simulateAlpha():
    ev1 = ev.Evaluator(1)
    ev2 = ev.Evaluator(1)
    """#Alfabeta vs Union
    ag1 = ag.AlphaBetaAgent(1,4,ev1)
    ag2 = ag.UnionRulesAgent(2)
    sim = Simulation(ag1, ag2, 250, 1)

    # Union vs Alfabeta
    ag1 = ag.UnionRulesAgent(1)
    ag2 = ag.AlphaBetaAgent(2,4,ev1)
    sim = Simulation(ag1, ag2, 250, None, 1)"""

    # Determinista
    # Alfabeta vs Minimax
    ag1 = ag.AlphaBetaAgent(1, 4, ev1)
    ag2 = ag.MinimaxAgent(2, 4, ev2)
    sim = Simulation(ag1, ag2, 1, 1, 1)

    # Minimax vs Alfabeta
    ag1 = ag.MinimaxAgent(1, 4, ev2)
    ag2 = ag.AlphabetaAgent(2, 4, ev1)
    sim = Simulation(ag1, ag2, 1, 1, 1)

    #Alfabeta vs MCTS
    ag1 = ag.AlphaBetaAgent(1, 4, ev1)
    ag2 = ag.MonteCarloAgent(2, None)
    sim = Simulation(ag1, ag2, 250, 1)

    # MCTS vs Alfabeta
    ag1 = ag.MonteCarloAgent(1, None)
    ag2 = ag.AlphaBetaAgent(2, 4, ev1)
    sim = Simulation(ag1, ag2, 250, None, 1)
Exemple #4
0
def simulateEvaluator():
    # Alfabeta vs alfabeta variando evaluator
    for i in range(1, 7):
        for j in range(1, 7):
            if i != j:
                sim = Simulation(ag.AlphaBetaAgent(1, 4, ev.Evaluator(i)),
                                 ag.AlphaBetaAgent(2, 4, ev.Evaluator(j)), 1,
                                 i, j)
Exemple #5
0
def simulateDepthM():
    ev1 = ev.Evaluator(1)
    ev2 = ev.Evaluator(1)

    for i in range(1, 9):
        sim = Simulation(ag.MinimaxAgent(1, i, ev1),
                         ag.AlphaBetaAgent(2, 4, ev2), 1, "", 1)

        sim = Simulation(ag.AlphaBetaAgent(1, 4, ev2),
                         ag.MinimaxAgent(2, i, ev1), 1, 1, "")
Exemple #6
0
    def resultSimulate(self, matrix1, matrix2):
        ev1_1 = ev.Evaluator(1, matrix1)
        ev2_1 = ev.Evaluator(1, matrix2)
        ag1_1 = ag.AlphaBetaAgent(1, 4, ev1_1)  # ind1 -> Blanco
        ag2_1 = ag.AlphaBetaAgent(2, 4, ev2_1)  # ind2 -> Negro
        simulate1 = self.simulateGame(ag1_1, ag2_1)
        a1w, a2b, d1 = 0, 0, 0
        if (simulate1 == 2):
            a2b += 1
        elif (simulate1 == 1):
            a1w += 1
        else:
            d1 += 1

        ev1_2 = ev.Evaluator(1, matrix1)
        ev2_2 = ev.Evaluator(1, matrix2)
        ag1_2 = ag.AlphaBetaAgent(2, 4, ev1_2)  # ind1 -> Negro
        ag2_2 = ag.AlphaBetaAgent(1, 4, ev2_2)  # ind2 -> Blanco
        simulate2 = self.simulateGame(ag2_2, ag1_2)
        a2w, a1b, d2 = 0, 0, 0
        if (simulate2 == 2):
            a1b += 1
        elif (simulate2 == 1):
            a2w += 1
        else:
            d2 += 1

        a1 = a1w + a1b
        a2 = a2w + a2b
        d = d1 + d2
        if a1 > a2:
            return matrix1, 1
        elif a2 > a1:
            return matrix2, 2
        else:
            random = randint(0, 1)
            if random == 0:
                return matrix1, -1
            else:
                return matrix2, -2