def main(): Support.log(msg="# Parsing and checking the input arguments\n", level="STEP") args = Argparser.parse_mascotte_arguments() logArgs(args) if args['rndseed'] != None: random.seed(args['rndseed']) Support.log(msg="# Setting up for simulating human diploid genome\n", level="STEP") human = Genomics.HumanGenome(reference=args['reference'], snplist=args['snplist'], snpratio=args['snpratio'], HEHOratio=args['HEHOratio'], ignorelist=args['ignore']) maternalhuman = os.path.join(args['xdir'], 'human.maternal.fa') paternalhuman = os.path.join(args['xdir'], 'human.paternal.fa') Support.log(msg="# Simulating human diploid genome\n", level="STEP") human.buildGenome(maternalout=maternalhuman, paternalout=paternalhuman) Support.log('Chromosomes: {}\n'.format(', '.join(human.chromosomes)), level='INFO') Support.log('Number of simulated SNPs: {}\n'.format(human.numsnps), level='INFO') Support.log('Number of heterozygous SNPs: {}\n'.format(human.hetsnps), level='INFO') Support.log('Maternal chromosome of human genome written in {}\n'.format(maternalhuman), level='INFO') Support.log('Maternal chromosome of human genome written in {}\n'.format(paternalhuman), level='INFO') Support.log(msg="# Simulating tumor clones and their evolution through specified CNAs\n", level="STEP") tumor = Mutation.simulateEvolution(numclones=args['numclones'], humanGenome=human, binsize=args['binsize'], mutations=args['mutations']) Support.log('Simulated tumor clones: {}\n'.format(', '.join([clone.label for clone in tumor.clones])), level='INFO') Support.log('Founder tumor clone: {}\n'.format(tumor.root.label), level='INFO') with open(os.path.join(args['xdir'], 'tumor.dot'), 'w') as o: o.write("{}\n".format(tumor.draw())) Support.log('The resulting tumor evolution of clones and related CNAs have been drawn in {} as dot format\n'.format(os.path.join(args['xdir'], 'tumor.dot')), level='INFO') Support.log('Genome length of the various tumor clones:\n\t{}\n'.format('\n\t'.join(['{}: {}'.format(clone.label, clone.genomeLength()) for clone in tumor.clones])), level='INFO') Support.log('Computing and segmenting the copy-number profiles jointly for all tumor clones\n', level='INFO') segments = segmentation(evolution=tumor) Support.log('Total number of resulting segments= {}\n'.format(sum(len(segments[chro]) for chro in tumor.human.chromosomes)), level='INFO') segout = os.path.join(args['xdir'], 'copynumbers.csv') with open(segout, 'w') as o: o.write('\t'.join(['#CHR', 'START', 'END'] + [clone.label for clone in tumor.clones]) + '\n') o.write('\n'.join(['\t'.join(map(str, [chro, seg[0], seg[1]]+['{}|{}'.format(segments[chro][seg][clone.idx]['m'], segments[chro][seg][clone.idx]['p']) for clone in tumor.clones])) for chro in tumor.human.chromosomes for seg in sorted(segments[chro], key=(lambda x : x[0]))])) o.write('\n') Support.log('The allele-specific copy number profiles for every tumor clone has been written in {}\n'.format(segout), level='INFO') Support.log('Writing the FASTA-format genomes of tumor clones\n', level='INFO') if args['jobs'] == 1: for clone in tumor.clones: maternalout = os.path.join(args['xdir'], '{}.maternal.fa'.format(clone.label)) paternalout = os.path.join(args['xdir'], '{}.paternal.fa'.format(clone.label)) clone.buildGenome(maternalout, paternalout) else: builder = Builder.CloneGenomeBuilder(tumor, args['xdir']) builder.parallelbuild(args['jobs']) Support.log('Tumor-clone genomes wrote in:\n{}\n'.format('\n'.join(['\t{}: maternal > {} and paternal > {}'.format(clone.label, os.path.join(args['xdir'], '{}.maternal.fa'.format(clone.label)), os.path.join(args['xdir'], '{}.paternal.fa'.format(clone.label))) for clone in tumor.clones])), level='INFO') Support.log('KTHXBY!\n', level='STEP')
def main(): global ARGS ARGS = Argparser.parse_args() if ARGS.passive: global PASSIVE_MODE PASSIVE_MODE = True addr = None if ARGS.address is not None: addr = (ARGS.address, ARGS.port) else: address = input("Input address: ") port = input('Input port: ') if port != '': addr = (address, port) else: addr = (address, ARGS.port) print('Connecting to ' + str(addr[0]) + ':' + str(addr[1])) sock = socket.socket() sock.settimeout(TIMEOUT) data_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: sock = connect(addr) print(receive_full_reply(sock)) data_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) data_sock.settimeout(TIMEOUT) data_sock.close() if ARGS.get or ARGS.put: batch_mode(sock, data_sock) login(sock, None, None, None) run(sock, data_sock) except ConnectionError as error: print(error) sys.exit(1) except Exception as error: print(error) run(sock, data_sock)
import Argparser if __name__ == '__main__': args = Argparser.parse_args() args.func(args)
import sudokuPuzzles import SudokuSolver import Argparser argparser = Argparser.Argparser() find_all = argparser.find_all puzzle_number = argparser.puzzle_number puzzles = sudokuPuzzles.puzzle_dict def show_solutions(solutions): if solutions: print(f'The following {len(solutions)} solutions where found:') for i, board in enumerate(solutions, 1): print(f'#{i}\n{board} \n') else: print('no possible solutions for this puzzle') if puzzle_number == 'generate': sudoku = SudokuSolver.Sudoku(None) sudoku.show_board() sudoku.solve(find_all) show_solutions(sudoku.solutions) else: puzzle = puzzles[puzzle_number] sudoku = SudokuSolver.Sudoku(puzzle) print(f'The original puzzle looks like:\n{sudoku.board}\n') sudoku.solve(find_all) show_solutions(sudoku.solutions)
import numpy as np from matplotlib import pyplot as plt import argparse import RootUtils import SystemUtils import Argparser def getUVFromTitle(title): u, v, N, rest = title.split(',') return u, v, N, rest parser = argparse.ArgumentParser() FLAGS, _ = Argparser.add_args(parser) Argparser.print_args(FLAGS) ROOT.gROOT.SetBatch(ROOT.kTRUE) ROOT.gStyle.SetOptStat(ROOT.kFALSE) maind = 'outpath' layers = [x for x in range(1, FLAGS.nlayers + 1)] subd_names = ['layer' + str(layers[x]) for x in range(len(layers))] histo_names_rechits = [[] for _ in range(len(layers))] histo_names_geom = [[] for _ in range(len(layers))] for il, l in enumerate(layers): with open('data/HistoNamesRecHitsLayer' + str(l) + '_mask' + str(FLAGS.mask) + '.txt') as f: for line in f: histo_names_rechits[il].append(line[:-1]) with open('data/HistoNamesGeomLayer' + str(l) + '_mask' + str(FLAGS.mask) +