Exemple #1
0
from HARKestimation import minimizeNelderMead, bootstrapSampleFromData
import numpy as np
import pylab
from time import time

# Set booleans to determine which tasks should be done
estimate_model = True
compute_standard_errors = False
make_contour_plot = True

#=====================================================
# Define objects and functions used for the estimation
#=====================================================

# Make a lifecycle consumer to be used for estimation, including simulated shocks (plus an initial distribution of wealth)
EstimationAgent = Model.ConsumerType(**Params.init_consumer_objects)
EstimationAgent(sim_periods=EstimationAgent.T_total + 1)
EstimationAgent.makeIncShkHist()
EstimationAgent.a_init = drawDiscrete(
    P=Params.initial_wealth_income_ratio_probs,
    X=Params.initial_wealth_income_ratio_vals,
    N=Params.num_agents,
    seed=Params.seed)


# Define the objective function for the estimation
def smmObjectiveFxn(DiscFacAdj,
                    CRRA,
                    agent=EstimationAgent,
                    DiscFacAdj_bound=Params.DiscFacAdj_bound,
                    CRRA_bound=Params.CRRA_bound,
Exemple #2
0
import sys
from HARKutilities import plotFunc, plotFuncDer, plotFuncs  # Basic plotting tools
from time import clock  # Timing utility
from copy import deepcopy  # "Deep" copying for complex objects
from HARKparallel import multiThreadCommandsFake, multiThreadCommands  # Parallel processing
mystr = lambda number: "{:.4f}".format(number)  # Format numbers as strings
import numpy as np  # Numeric Python

if __name__ == '__main__':  # Parallel calls *must* be inside a call to __main__
    type_count = 32  # Number of values of CRRA to solve

    # Make the basic type that we'll use as a template.
    # The basic type has an artificially dense assets grid, as the problem to be
    # solved must be sufficiently large for multithreading to be faster than
    # single-threading (looping), due to overhead.
    BasicType = Model.ConsumerType(**Params.init_consumer_objects)
    BasicType.aXtraMax = 100
    BasicType.aXtraCount = 64
    BasicType.updateAssetsGrid()
    BasicType.timeFwd()
    BasicType.assignParameters(
        LivPrb=[0.98], DiscFac=[0.96], PermGroFac=[1.01],
        cycles=0)  # This is what makes the type infinite horizon
    BasicType(vFuncBool=False, cubicBool=True)
    BasicType.IncomeDstn = [
        BasicType.IncomeDstn[0]
    ]  # A "one period" infinite horizon model, so only need one period of income distributions

    # Solve the basic type and plot the results, to make sure things are working
    start_time = clock()
    BasicType.solve()