def eval(config, solver, epoch=0): acc = 0 loss = 0 labels = [] predictions = [] test_file = os.path.join(config.data, 'testrotnet.txt') mean = get_mean(config.mean_file) batch_size = solver.test_nets[0].blobs['data'].num test_iters = int( get_dataset_size(config, 'testrotnet') / config.batch_size) for i in range(test_iters): solver.test_nets[0].forward() acc += solver.test_nets[0].blobs['my_accuracy'].data loss += solver.test_nets[0].blobs['(automatic)'].data probs = solver.test_nets[0].blobs['prob'].data predictions += classify(probs) labels.append(int(solver.test_nets[0].blobs['label'].data[0])) acc /= test_iters loss /= test_iters if not config.test: print("Accuracy: {:.3f}".format(acc)) print("Loss: {:.3f}".format(loss)) LOSS_LOGGER.log(loss, epoch, "eval_loss") ACC_LOGGER.log(acc, epoch, "eval_accuracy") else: import Evaluation_tools as et eval_file = os.path.join(config.log_dir, '{}.txt'.format(config.name)) et.write_eval_file(config.data, eval_file, predictions, labels, config.name) et.make_matrix(config.data, eval_file, config.log_dir)
def eval_alone(config): data = model_data.read_data(config.data, config, read_train=False) data = data.test seq_rnn_model = SequenceRNNModel(config.n_input_fc, config.num_views, config.n_hidden, config.decoder_embedding_size, config.num_classes+1, config.n_hidden, batch_size=data.size(), is_training=False, use_lstm=config.use_lstm, use_attention=config.use_attention, use_embedding=config.use_embedding, num_heads=config.num_heads) seq_rnn_model.build_model("train") tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True with tf.Session(config=tf_config) as sess: #config.gpu_options.per_process_gpu_memory_fraction = 0.3 saver = tf.train.Saver() saver.restore(sess, get_modelpath(config.weights)) acc, loss, predictions, labels = _test(data, seq_rnn_model, sess) log(config.log_file, "TESTING ACCURACY {}".format(acc)) predictions = [x-1 for x in predictions] labels = [x-1 for x in labels] import Evaluation_tools as et eval_file = os.path.join(config.log_dir, '{}.txt'.format(config.name)) et.write_eval_file(config.data, eval_file, predictions, labels, config.name) et.make_matrix(config.data, eval_file, config.log_dir)
def eval(config, solver, epoch=0): acc = 0 loss = 0 all_labels = [] predictions = [] test_count = get_dataset_size(config, 'test') keys = solver.test_nets[0].blobs.keys() batch_size = (solver.test_nets[0].blobs['label_octreedatabase_1_split_0']. data.shape[0]) test_iters = test_count / batch_size logits = np.zeros((test_count, config.num_classes)) print(logits.shape) for i in range(test_iters): solver.test_nets[0].forward() loss += solver.test_nets[0].blobs['loss'].data probs = solver.test_nets[0].blobs['ip2'].data logits[i * batch_size:(i + 1) * batch_size] = probs all_labels += list(solver.test_nets[0].blobs['label'].data) solver.test_nets[0].forward() loss += solver.test_nets[0].blobs['loss'].data probs = solver.test_nets[0].blobs['ip2'].data logits[batch_size * (test_iters):] = probs[0:test_count % batch_size] all_labels += list(solver.test_nets[0].blobs['label'].data)[0:test_count % batch_size] loss /= test_iters + 1 predictions = [] labels = [] for i in range(len(all_labels) / config.num_rotations): predictions.append( np.argmax( np.sum(logits[i * config.num_rotations:(i + 1) * config.num_rotations], axis=0))) labels.append(all_labels[i * config.num_rotations]) acc = sum([1 for i in range(len(labels)) if predictions[i] == labels[i] ]) / float(len(labels)) if not config.test: log(config.log_file, "EPOCH: {} Test loss: {}".format(epoch, loss)) log(config.log_file, "EPOCH: {} Test accuracy: {}".format(epoch, acc)) LOSS_LOGGER.log(loss, epoch, "eval_loss") ACC_LOGGER.log(acc, epoch, "eval_accuracy") else: log(config.log_file, "----------------------") import Evaluation_tools as et labels = [int(l) for l in labels] eval_file = os.path.join(config.log_dir, '{}.txt'.format(config.name)) et.write_eval_file(config.data, eval_file, predictions, labels, config.name) et.make_matrix(config.data, eval_file, config.log_dir)
def test(config,test_vertices, test_faces, test_nFaces, test_labels): log(config['log_file'],"Start testing") config['mode'] = 'test' _, predictions = acc_fun(net,test_vertices, test_faces, test_nFaces, test_labels, config) acc = 100.*(predictions == test_labels).sum()/len(test_labels) log(config['log_file'],'Eval accuracy: {}'.format(acc)) import Evaluation_tools as et eval_file = os.path.join(config['log_dir'], '{}.txt'.format(config['name'])) print(eval_file) et.write_eval_file(config['data'], eval_file, predictions , test_labels , config['name']) et.make_matrix(config['data'], eval_file, config['log_dir'])
def test(model, config, best_accuracy=0, epoch=None): batch_amount = 0 model.test_loss.data.zero_() model.test_accuracy.data.zero_() predictions = [] labels = [] for i, data in enumerate(testloader): input_pc, input_sn, input_label, input_node, input_node_knn_I = data model.set_input(input_pc, input_sn, input_label, input_node, input_node_knn_I) model.test_model() batch_amount += input_label.size()[0] model.test_loss += model.loss.detach() * input_label.size()[0] # accumulate accuracy _, predicted_idx = torch.max(model.score.data, dim=1, keepdim=False) predictions += list(predicted_idx) labels += list(input_label) correct_mask = torch.eq(predicted_idx, model.input_label).float() test_accuracy = torch.mean(correct_mask).cpu() model.test_accuracy += test_accuracy * input_label.size()[0] model.test_loss /= batch_amount model.test_accuracy /= batch_amount if config.test: predictions = [x.item() for x in predictions] labels = [x.item() for x in labels] import Evaluation_tools as et eval_file = os.path.join(config.log_dir, '{}.txt'.format(config.name)) et.write_eval_file(config.data, eval_file, predictions, labels, config.name) et.make_matrix(config.data, eval_file, config.log_dir) else: if model.test_accuracy.item() > best_accuracy: best_accuracy = model.test_accuracy.item() loss = model.test_loss.item() acc = model.test_accuracy.item() log(config.log_file, 'Tested network. So far best: {}'.format(best_accuracy)) log(config.log_file, "TESTING EPOCH {} acc: {} loss: {}".format(epoch, acc, loss)) LOSS_LOGGER.log(loss, epoch, "eval_loss") ACC_LOGGER.log(acc, epoch, "eval_accuracy") return best_accuracy
def test(config): log_dir = os.path.join(config.log_dir, config.name + '_stage_2') val_path = os.path.join(config.data, "*/test") val_dataset = MultiviewImgDataset(val_path, scale_aug=False, rot_aug=False, num_views=config.num_views) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=config.stage2_batch_size, shuffle=False, num_workers=0) pretraining = not config.no_pretraining cnet = SVCNN(config.name, nclasses=config.num_classes, cnn_name=config.cnn_name, pretraining=pretraining) cnet_2 = MVCNN(config.name, cnet, nclasses=config.num_classes, cnn_name=config.cnn_name, num_views=config.num_views) cnet_2.load( os.path.join(log_dir, config.snapshot_prefix + str(config.weights))) optimizer = optim.Adam(cnet_2.parameters(), lr=config.learning_rate, weight_decay=config.weight_decay, betas=(0.9, 0.999)) trainer = ModelNetTrainer(cnet_2, None, val_loader, optimizer, nn.CrossEntropyLoss(), config, log_dir, num_views=config.num_views) labels, predictions = trainer.update_validation_accuracy(config.weights, test=True) import Evaluation_tools as et eval_file = os.path.join(config.log_dir, '{}.txt'.format(config.name)) et.write_eval_file(config.data, eval_file, predictions, labels, config.name) et.make_matrix(config.data, eval_file, config.log_dir)
def eval(config, solver, epoch=0): acc = 0 loss = 0 labels = [] predictions = [] test_count = get_dataset_size(config, 'test') keys = solver.test_nets[0].blobs.keys() batch_size = ( solver.test_nets[0].blobs['label_data_1_split_0'].data.shape[0]) test_iters = test_count / batch_size for i in range(test_iters): solver.test_nets[0].forward() acc += solver.test_nets[0].blobs['accuracy'].data loss += solver.test_nets[0].blobs['loss'].data probs = solver.test_nets[0].blobs['ip2'].data predictions += list(np.argmax(np.array(probs), axis=1)) labels += list(solver.test_nets[0].blobs['label'].data) solver.test_nets[0].forward() acc += solver.test_nets[0].blobs['accuracy'].data loss += solver.test_nets[0].blobs['loss'].data probs = solver.test_nets[0].blobs['ip2'].data predictions += list(np.argmax(np.array(probs), axis=1))[0:test_count % batch_size] labels += list(solver.test_nets[0].blobs['label'].data)[0:test_count % batch_size] acc /= test_iters + 1 loss /= test_iters + 1 if not config.test: print("Accuracy: {:.3f}".format(acc)) print("Loss: {:.3f}".format(loss)) LOSS_LOGGER.log(loss, epoch, "eval_loss") ACC_LOGGER.log(acc, epoch, "eval_accuracy") else: print("----------------------") import Evaluation_tools as et labels = [int(l) for l in labels] eval_file = os.path.join(config.log_dir, '{}.txt'.format(config.name)) et.write_eval_file(config.data, eval_file, predictions, labels, config.name) et.make_matrix(config.data, eval_file, config.log_dir)
def evaluate(x_test, y_test, cfg, tfuncs, tvars, config, epoch=0): log(config.log_file, "testing") n_rotations = cfg['n_rotations'] chunk_size = n_rotations * cfg['batches_per_chunk'] num_chunks = int(math.ceil(float(len(x_test)) / chunk_size)) labels = [] test_class_error = [] pred_array = [] losses = [] accs = [] for chunk_index in xrange(num_chunks): upper_range = min(len(y_test), (chunk_index + 1) * chunk_size) # x_shared = np.asarray(x_test[chunk_index * chunk_size:upper_range, :, :, :, :], dtype=np.float32) y_shared = np.asarray(y_test[chunk_index * chunk_size:upper_range], dtype=np.float32) num_batches = int(math.ceil(float(len(x_shared)) / n_rotations)) tvars['X_shared_'].set_value(4.0 * x_shared - 1.0, borrow=True) tvars['y_shared_'].set_value(y_shared, borrow=True) for bi in xrange(num_batches): [batch_loss, batch_test_class_error, pred, raw_pred, y] = tfuncs['test_function'](bi) losses.append(batch_loss) accs.append(batch_test_class_error) pred_array.append(np.array(pred)) labels.append(y[0]) loss, acc = [float(np.mean(losses)), 1.0 - float(np.mean(accs))] predictions = list(pred_array) log( config.log_file, 'EVALUTAION: epoch: {0:^3d}, loss: {2:.6f}, acc: {3:.5f}'.format( epoch, loss, acc)) if not config.test: LOSS_LOGGER.log(loss, epoch, "eval_loss") ACC_LOGGER.log(acc, epoch, "eval_accuracy") else: import Evaluation_tools as et eval_file = os.path.join(config.log_dir, '{}.txt'.format(config.name)) et.write_eval_file(config.data, eval_file, predictions, labels, config.name) et.make_matrix(config.data, eval_file, config.log_dir)
def test(dataset, config): print('test() called') weights = config.weights V = config.num_views batch_size = config.batch_size ckptfile = os.path.join(config.log_dir, config.snapshot_prefix + str(weights)) data_size = dataset.size() print('dataset size:', data_size) with tf.Graph().as_default(): global_step = tf.Variable(0, trainable=False) view_ = tf.placeholder('float32', shape=(None, V, 227, 227, 3), name='im0') y_ = tf.placeholder('int64', shape=(None), name='y') keep_prob_ = tf.placeholder('float32') fc8 = model.inference_multiview(view_, config.num_classes, keep_prob_) loss = model.loss(fc8, y_) #train_op = model.train(loss, global_step, data_size) prediction = model.classify(fc8) placeholders = [view_, y_, keep_prob_, prediction, loss] saver = tf.train.Saver(tf.all_variables()) init_op = tf.global_variables_initializer() sess = tf.Session(config=tf.ConfigProto(log_device_placement=False)) saver.restore(sess, ckptfile) print('restore variables done') print("Start testing") print("Size:", data_size) print("It'll take", int(math.ceil(data_size / batch_size)), "iterations.") acc, _, predictions, labels = _test(dataset, config, sess, placeholders) print('acc:', acc * 100) import Evaluation_tools as et eval_file = os.path.join(config.log_dir, '{}.txt'.format(config.name)) et.write_eval_file(config.data, eval_file, predictions, labels, config.name) et.make_matrix(config.data, eval_file, config.log_dir)
def _evaluate(net, sess, test_data, config, epoch=0): labels = [] predictions = [] losses = [] acc = 0 count = 0 while True: batch_images, batch_labels, reset = test_data.next_batch( config.batch_size) if reset: break logits, loss = net.test(batch_images, batch_labels, sess) losses.append(loss) for i in range(len(batch_labels) / config.num_views): endindex = i * config.num_views + config.num_views prediction = np.argmax( np.sum(logits[i * config.num_views:endindex], axis=0)) predictions.append(prediction) label = batch_labels[i * config.num_views] labels.append(label) if label == prediction: acc += 1 else: acc += 0 count += 1 acc = acc / float(count) log(config.log_file, "EVALUATING epoch {} - acc: {} loss: {}".format(epoch, acc, loss)) if not config.test: loss = np.mean(losses) LOSS_LOGGER.log(loss, epoch, "eval_loss") ACC_LOGGER.log(acc, epoch, "eval_accuracy") else: import Evaluation_tools as et eval_file = os.path.join(config.log_dir, '{}.txt'.format(config.name)) et.write_eval_file(config.data, eval_file, predictions, labels, config.name) et.make_matrix(config.data, eval_file, config.log_dir)
def evaluate_ensemble(all_preds, labels): all_preds = np.array(all_preds) summed_preds = np.sum(all_preds, axis=0) final_predictions = np.argmax(summed_preds, 1) return final_predictions ### TODO: Clean this up and add the necessary arguments to enable all of the options we want. if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('model', help='path to file containing model definition') parser.add_argument('data', default="/data/converted", help='path to data folder') parser.add_argument('--log_dir', default="logs", help='path to data folder') parser.add_argument('--weights', type=int, help='number of model to test') args = parser.parse_args() file = args.model predictions, labels = test(args) import Evaluation_tools as et eval_file = os.path.join(args.log_dir, 'vrnens.txt') et.write_eval_file(args.data, eval_file, predictions, labels, 'VRNENS') et.make_matrix(args.data, eval_file, args.log_dir)
def main(argv): pycaffe_dir = caffe_root + 'python/' parser = argparse.ArgumentParser() # Required arguments: input and output files. parser.add_argument("--input_file", default="/data/converted/testrotnet.txt", help="text file containg the image paths") # Optional arguments. parser.add_argument( "--model_def", default="./Training/rotationnet_modelnet40_case1_solver.prototxt", help="Model definition file.") parser.add_argument('--weights', type=int, default=-1) parser.add_argument('--views', type=int, default=12) parser.add_argument('--log_dir', default='logs', type=str) parser.add_argument( "--center_only", action='store_true', default=False, help="Switch for prediction from center crop alone instead of " + "averaging predictions across crops (default).") parser.add_argument( "--images_dim", default='227,227', help="Canonical 'height,width' dimensions of input images.") parser.add_argument( "--mean_file", default=os.path.join(caffe_root, 'data/ilsvrc12/imagenet_mean.binaryproto'), help="Data set image mean of H x W x K dimensions (np array). " + "Set to '' for no mean subtraction.") parser.add_argument( "--input_scale", type=float, default=255, help="Multiply input features by this scale before input to net") parser.add_argument( "--channel_swap", default='2,1,0', help="Order to permute input channels. The default converts " + "RGB -> BGR since BGR is the Caffe default by way of OpenCV.") args = parser.parse_args() args.pretrained_model = os.path.join( args.log_dir, 'case1_iter_' + str(args.weights) + '.caffemodel') image_dims = [int(s) for s in args.images_dim.split(',')] channel_swap = [int(s) for s in args.channel_swap.split(',')] if args.mean_file: mean = get_mean(args.mean_file) caffe.set_mode_gpu() # Make classifier. classifier = caffe.Classifier(args.model_def, args.pretrained_model, image_dims=image_dims, mean=mean, input_scale=1.0, raw_scale=255.0, channel_swap=channel_swap) listfiles, labels = read_lists(args.input_file) #dataset = Dataset(listfiles, labels, subtract_mean=False, V=20) # Load image file. args.input_file = os.path.expanduser(args.input_file) preds = [] labels = [int(label) for label in labels] total = len(listfiles) views = args.views batch = 8 * views for i in range(len(listfiles) / (batch * views)): #im_files = [line.rstrip('\n') for line in open(listfiles[views*i+j])] im_files = listfiles[i * batch * views:(i + 1) * batch * views] #labels.append(int(im_files[0])) #im_files = im_files[2:] inputs = [caffe.io.load_image(im_f) for im_f in im_files] predictions = classifier.predict(inputs, not args.center_only) classified = classify(predictions) preds.append(classified) print(classified) import Evaluation_tools as et data = '/data' logs = '/logs' eval_file = os.path.join(logs, 'rotnet.txt') et.write_eval_file(data, eval_file, preds, labels, 'ROTNET') et.make_matrix(data, eval_file, logs)
def eval_one_epoch(config, sess, ops, epoch=0): is_training = False num_votes = config.num_votes total_seen = 0 loss_sum = 0 predictions = [] labels = [] all = 0 for fn in range(len(TEST_FILES)): log_string('----' + str(fn) + '-----') current_data, current_label = provider.loadDataFile(TEST_FILES[fn]) current_data = current_data[:, 0:config.num_points, :] current_label = np.squeeze(current_label) file_size = current_data.shape[0] num_batches = file_size // config.batch_size + 1 for batch_idx in range(num_batches): start_idx = batch_idx * config.batch_size end_idx = (batch_idx + 1) * config.batch_size cur_batch_size = min(end_idx - start_idx, config.batch_size - end_idx + file_size) if cur_batch_size < config.batch_size: placeholder_data = np.zeros( ([config.batch_size] + (list(current_data.shape))[1:])) placeholder_data[0:cur_batch_size, :, :] = current_data[ start_idx:end_idx, :, :] placeholder_labels = np.zeros((config.batch_size)) placeholder_labels[0:cur_batch_size] = current_label[ start_idx:end_idx] batch_labels = placeholder_labels batch_data = placeholder_data else: batch_data = current_data[start_idx:end_idx, :, :] batch_labels = current_label[start_idx:end_idx] # Aggregating BEG batch_loss_sum = 0 # sum of losses for the batch batch_pred_sum = np.zeros( (config.batch_size, config.num_classes)) # score for classes for vote_idx in range(num_votes): rotated_data = provider.rotate_point_cloud_by_angle( batch_data, vote_idx / float(num_votes) * np.pi * 2) feed_dict = { ops['pointclouds_pl']: rotated_data, ops['labels_pl']: batch_labels, ops['is_training_pl']: is_training } loss_val, pred_val = sess.run([ops['loss'], ops['pred']], feed_dict=feed_dict) batch_pred_sum += pred_val batch_loss_sum += (loss_val * cur_batch_size / float(num_votes)) pred_val = np.argmax(batch_pred_sum, 1) predictions += pred_val.tolist()[0:cur_batch_size] labels += current_label[start_idx:end_idx].tolist() total_seen += cur_batch_size loss_sum += batch_loss_sum loss = loss_sum / float(total_seen) acc = sum([ 1 if predictions[i] == labels[i] else 0 for i in range(len(predictions)) ]) / float(len(predictions)) print(loss) print(acc) if config.test: import Evaluation_tools as et eval_file = os.path.join(config.log_dir, '{}.txt'.format(config.name)) et.write_eval_file(config.data, eval_file, predictions, labels, config.name) et.make_matrix(config.data, eval_file, config.log_dir) else: log_string('eval mean loss: %f' % loss) LOSS_LOGGER.log(loss, epoch, "eval_loss") log_string('eval accuracy: %f' % acc) ACC_LOGGER.log(acc, epoch, "eval_accuracy")
def eval_one_epoch(config, sess, ops, topk=1, epoch=0): is_training = False # Make sure batch data is of same size cur_batch_data = np.zeros( (config.batch_size, config.num_points, TEST_DATASET.num_channel())) cur_batch_label = np.zeros((config.batch_size), dtype=np.int32) total_correct = 0 total_seen = 0 loss_sum = 0 batch_idx = 0 shape_ious = [] predictions = [] labels = [] while TEST_DATASET.has_next_batch(): batch_data, batch_label = TEST_DATASET.next_batch(augment=False) bsize = batch_data.shape[0] # for the last batch in the epoch, the bsize:end are from last batch cur_batch_data[0:bsize, ...] = batch_data cur_batch_label[0:bsize] = batch_label batch_pred_sum = np.zeros( (config.batch_size, config.num_classes)) # score for classes for vote_idx in range(config.num_votes): # Shuffle point order to achieve different farthest samplings shuffled_indices = np.arange(config.num_points) np.random.shuffle(shuffled_indices) if config.normal: rotated_data = provider.rotate_point_cloud_by_angle_with_normal( cur_batch_data[:, shuffled_indices, :], vote_idx / float(config.num_votes) * np.pi * 2) else: rotated_data = provider.rotate_point_cloud_by_angle( cur_batch_data[:, shuffled_indices, :], vote_idx / float(config.num_votes) * np.pi * 2) feed_dict = { ops['pointclouds_pl']: rotated_data, ops['labels_pl']: cur_batch_label, ops['is_training_pl']: is_training } loss_val, pred_val = sess.run([ops['loss'], ops['pred']], feed_dict=feed_dict) batch_pred_sum += pred_val pred_val = np.argmax(batch_pred_sum, 1) correct = np.sum(pred_val[0:bsize] == batch_label[0:bsize]) predictions += pred_val[0:bsize].tolist() labels += batch_label[0:bsize].tolist() total_correct += correct total_seen += bsize loss_sum += loss_val batch_idx += 1 loss = (loss_sum / float(batch_idx)) acc = (total_correct / float(total_seen)) log(config.log_file, "EVALUATING epoch {} - loss: {} acc: {} ".format(epoch, loss, acc)) if config.test: import Evaluation_tools as et eval_file = os.path.join(config.log_dir, '{}.txt'.format(config.name)) et.write_eval_file(config.data, eval_file, predictions, labels, config.name) et.make_matrix(config.data, eval_file, config.log_dir) else: LOSS_LOGGER.log(loss, epoch, "eval_loss") ACC_LOGGER.log(acc, epoch, "eval_accuracy") TEST_DATASET.reset() return total_correct / float(total_seen)
net = KDNET(config) if config.weights != -1: weights = config.weights load_weights(os.path.join(config.log_dir, config.snapshot_prefix+str(weights)), net.KDNet['output']) print("Loaded weights") if config.test: print("Start testing") _, predictions = acc_fun(net, test_vertices, test_faces, test_nFaces, test_labels, mode='test',config=config) acc = 100.*(predictions == test_labels).sum()/len(test_labels) print('Eval accuracy: {}'.format(acc)) import Evaluation_tools as et eval_file = os.path.join(config.log_dir, '{}.txt'.format(config.name)) et.write_eval_file(config.data, eval_file, predictions, test_labels, config.name) et.make_matrix(config.data, eval_file, config.log_dir) else: print("Start training") LOSS_LOGGER = Logger("{}_loss".format(config.name)) ACC_LOGGER = Logger("{}_acc".format(config.name)) start_epoch = 0 if config.weights != -1: ld = config.log_dir WEIGHTS = config.weights ckptfile = os.path.join(ld,config.snapshot_prefix+str(WEIGHTS)) start_epoch = WEIGHTS + 1 ACC_LOGGER.load((os.path.join(ld,"{}_acc_train_accuracy.csv".format(config.name)),os.path.join(ld,"{}_acc_eval_accuracy.csv".format(config.name))), epoch = WEIGHTS) LOSS_LOGGER.load((os.path.join(ld,"{}_loss_train_loss.csv".format(config.name)), os.path.join(ld,'{}_loss_eval_loss.csv'.format(config.name))), epoch = WEIGHTS) begin = start_epoch