def tag_files(): path = "untagged/" tokenizer = nltk.data.load('tokenizers/punkt/PY3/english.pickle') files = FileReadingFuncts.get_files(path) for file in files: data = FileReadingFuncts.read_file(path, file) #tags the times entities_to_tag = TimeFunct.get_end_time_examples(data) data = tag_entities(data, entities_to_tag) #tags the named entitites data = tag_named_entities(data) #tags the sentences sentences = SentenceTaggingFuncts.get_sentences(data) entities_to_tag = get_in_dict(sentences, "sentence") data = tag_entities(data, entities_to_tag) #tags the paragraphs paragraphs = SentenceTaggingFuncts.get_paragraphs(data) entities_to_tag = get_in_dict(paragraphs, "paragraph") data = tag_entities(data, entities_to_tag) FileWritingFuncts.writeTaggedFile(data, file)
def get_all_tags(path, file, tag_name): #reads in the file: data = FileReadingFuncts.read_file(path, file) #finds all the matches tagged_matches = TagExtractingFuncts.find_tag_matches(tag_name, data) #removes the tags from every match untagged_matches = [] for match in tagged_matches: match = match.replace(".", "") untagged_matches.append(TagExtractingFuncts.get_rid_of_tags(match)) return untagged_matches
def createsFiles(tag_names): #reads in the tags path = "training/" files = FileReadingFuncts.get_files(path) matches = getblank2d(len(tag_names)) for file in files: data = FileReadingFuncts.read_file(path, file) for i in range(0, len(tag_names)): newMatches = TagExtractingFuncts.find_tag_matches(tag_names[i], data) matches[i] = matches[i] + (newMatches) #writes the tags to the files for i in range(0, len(tag_names)): outputFile = "tagFiles/{}.txt".format(tag_names[i]) writeFile(set(matches[i]), outputFile)